Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
import re | |
from polyglot.detect import Detector | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca" | |
RELATIVE_MODEL="LLaMAX/LLaMAX3-8B" | |
TITLE = "<h1><center>LLaMAX3-Translator</center></h1>" | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL, | |
torch_dtype=torch.float16, | |
device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
def lang_detector(text): | |
min_chars = 5 | |
if len(text) < min_chars: | |
return "Input text too short" | |
try: | |
detector = Detector(text).language | |
lang_info = str(detector) | |
code = re.search(r"name: (\w+)", lang_info).group(1) | |
return code | |
except Exception as e: | |
return f"ERROR:{str(e)}" | |
def Prompt_template(inst, prompt, query, src_language, trg_language): | |
inst = inst.format(src_language=src_language, trg_language=trg_language) | |
instruction = f"`{inst}`" | |
prompt = ( | |
f'{prompt}' | |
f'### Instruction:\n{instruction}\n' | |
f'### Input:\n{query}\n### Response:' | |
) | |
return prompt | |
# Unfinished | |
def chunk_text(): | |
pass | |
def translate( | |
source_text: str, | |
source_lang: str, | |
target_lang: str, | |
inst: str, | |
prompt: str, | |
max_length: int, | |
temperature: float, | |
top_p: float, | |
rp: float): | |
print(f'Text is - {source_text}') | |
prompt = Prompt_template(inst, prompt, source_text, source_lang, target_lang) | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
max_length=max_length, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=rp, | |
) | |
outputs = model.generate(**generate_kwargs) | |
resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
yield resp[len(prompt):] | |
CSS = """ | |
h1 { | |
text-align: center; | |
display: block; | |
height: 10vh; | |
align-content: center; | |
} | |
footer { | |
visibility: hidden; | |
} | |
""" | |
LICENSE = """ | |
Model: <a href="https://huggingface.co/LLaMAX/LLaMAX3-8B-Alpaca">LLaMAX3-8B-Alpaca</a> | |
""" | |
LANG_LIST = ['Akrikaans', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Asturian', 'Azerbaijani', \ | |
'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', \ | |
'Catalan', 'Cebuano', 'Simplified Chinese', 'Traditional Chinese', 'Croatian', 'Czech', \ | |
'Danish', 'Dutch', 'English', 'Estonian', 'Filipino', 'Finnish', 'French', 'Fulah', \ | |
'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', \ | |
'Hausa', 'Hebrew', 'Hindi', 'Hungarian', \ | |
'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', \ | |
'Japanese', 'Javanese', \ | |
'Kabuverdianu', 'Kamba', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', \ | |
'Lao', 'Latvian', 'Lingala', 'Lithuanian', 'Luo', 'Luxembourgish', \ | |
'Macedonian', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Mongolian', \ | |
'Nepali', 'Northern', 'Norwegian', 'Nyanja', \ | |
'Occitan', 'Oriya', 'Oromo', \ | |
'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', \ | |
'Romanian', 'Russian', \ | |
'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Sorani', 'Spanish', 'Swahili', 'Swedish', \ | |
'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', \ | |
'Ukrainian', 'Umbundu', 'Urdu', 'Uzbek', \ | |
'Vietnamese', 'Welsh', 'Wolof', 'Xhosa', 'Yoruba', 'Zulu'] | |
chatbot = gr.Chatbot(height=600) | |
with gr.Blocks(theme="soft", css=CSS) as demo: | |
gr.Markdown(TITLE) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
source_lang = gr.Textbox( | |
label="Source Lang(Auto-Detect)", | |
value="English", | |
) | |
target_lang = gr.Dropdown( | |
label="Target Lang", | |
value="Spanish", | |
choices=LANG_LIST, | |
) | |
max_length = gr.Slider( | |
label="Max Length", | |
minimum=512, | |
maximum=8192, | |
value=4096, | |
step=8, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0, | |
maximum=1, | |
value=0.3, | |
step=0.1, | |
) | |
top_p = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="top_p", | |
) | |
rp = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition penalty", | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
inst = gr.Textbox( | |
label="Instruction", | |
value="Translate the following sentences from {src_language} to {trg_language}.", | |
lines=3, | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
value=""" 'Below is an instruction that describes a task, paired with an input that provides further context. ' | |
'Write a response that appropriately completes the request.\n' """, | |
lines=8, | |
) | |
with gr.Column(scale=4): | |
source_text = gr.Textbox( | |
label="Source Text", | |
value="LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. "+\ | |
"LLaMAX supports translation between more than 100 languages, "+\ | |
"surpassing the performance of similarly scaled LLMs.", | |
lines=10, | |
) | |
output_text = gr.Textbox( | |
label="Output Text", | |
lines=10, | |
show_copy_button=True, | |
) | |
with gr.Row(): | |
submit = gr.Button(value="Submit") | |
clear = gr.ClearButton([source_text, output_text]) | |
gr.Markdown(LICENSE) | |
source_text.change(lang_detector, source_text, source_lang) | |
submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text]) | |
if __name__ == "__main__": | |
demo.launch() | |