Diffutoon-ExVideo / diffsynth /pipelines /stable_diffusion_xl.py
vilarin's picture
Upload 63 files
2ba49a8 verified
from ..models import ModelManager, SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder
# TODO: SDXL ControlNet
from ..prompts import SDXLPrompter
from ..schedulers import EnhancedDDIMScheduler
from .dancer import lets_dance_xl
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
class SDXLImagePipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__()
self.scheduler = EnhancedDDIMScheduler()
self.prompter = SDXLPrompter()
self.device = device
self.torch_dtype = torch_dtype
# models
self.text_encoder: SDXLTextEncoder = None
self.text_encoder_2: SDXLTextEncoder2 = None
self.unet: SDXLUNet = None
self.vae_decoder: SDXLVAEDecoder = None
self.vae_encoder: SDXLVAEEncoder = None
self.ipadapter_image_encoder: IpAdapterXLCLIPImageEmbedder = None
self.ipadapter: SDXLIpAdapter = None
# TODO: SDXL ControlNet
def fetch_main_models(self, model_manager: ModelManager):
self.text_encoder = model_manager.text_encoder
self.text_encoder_2 = model_manager.text_encoder_2
self.unet = model_manager.unet
self.vae_decoder = model_manager.vae_decoder
self.vae_encoder = model_manager.vae_encoder
def fetch_controlnet_models(self, model_manager: ModelManager, **kwargs):
# TODO: SDXL ControlNet
pass
def fetch_ipadapter(self, model_manager: ModelManager):
if "ipadapter_xl" in model_manager.model:
self.ipadapter = model_manager.ipadapter_xl
if "ipadapter_xl_image_encoder" in model_manager.model:
self.ipadapter_image_encoder = model_manager.ipadapter_xl_image_encoder
def fetch_prompter(self, model_manager: ModelManager):
self.prompter.load_from_model_manager(model_manager)
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units = [], **kwargs):
pipe = SDXLImagePipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_main_models(model_manager)
pipe.fetch_prompter(model_manager)
pipe.fetch_controlnet_models(model_manager, controlnet_config_units=controlnet_config_units)
pipe.fetch_ipadapter(model_manager)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
clip_skip_2=2,
input_image=None,
ipadapter_images=None,
ipadapter_scale=1.0,
controlnet_image=None,
denoising_strength=1.0,
height=1024,
width=1024,
num_inference_steps=20,
tiled=False,
tile_size=64,
tile_stride=32,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if input_image is not None:
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
latents = self.vae_encoder(image.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype)
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
# Encode prompts
add_prompt_emb_posi, prompt_emb_posi = self.prompter.encode_prompt(
self.text_encoder,
self.text_encoder_2,
prompt,
clip_skip=clip_skip, clip_skip_2=clip_skip_2,
device=self.device,
positive=True,
)
if cfg_scale != 1.0:
add_prompt_emb_nega, prompt_emb_nega = self.prompter.encode_prompt(
self.text_encoder,
self.text_encoder_2,
negative_prompt,
clip_skip=clip_skip, clip_skip_2=clip_skip_2,
device=self.device,
positive=False,
)
# Prepare positional id
add_time_id = torch.tensor([height, width, 0, 0, height, width], device=self.device)
# IP-Adapter
if ipadapter_images is not None:
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
ipadapter_kwargs_list_posi = self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)
ipadapter_kwargs_list_nega = self.ipadapter(torch.zeros_like(ipadapter_image_encoding))
else:
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {}, {}
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = torch.IntTensor((timestep,))[0].to(self.device)
# Classifier-free guidance
noise_pred_posi = lets_dance_xl(
self.unet,
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi,
add_time_id=add_time_id, add_text_embeds=add_prompt_emb_posi,
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
ipadapter_kwargs_list=ipadapter_kwargs_list_posi,
)
if cfg_scale != 1.0:
noise_pred_nega = lets_dance_xl(
self.unet,
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega,
add_time_id=add_time_id, add_text_embeds=add_prompt_emb_nega,
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
ipadapter_kwargs_list=ipadapter_kwargs_list_nega,
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
latents = self.scheduler.step(noise_pred, timestep, latents)
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
image = self.decode_image(latents.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return image