Spaces:
Running
Running
| from PIL import Image | |
| import cupy as cp | |
| import numpy as np | |
| from tqdm import tqdm | |
| from ..extensions.FastBlend.patch_match import PyramidPatchMatcher | |
| from ..extensions.FastBlend.runners.fast import TableManager | |
| from .base import VideoProcessor | |
| class FastBlendSmoother(VideoProcessor): | |
| def __init__( | |
| self, | |
| inference_mode="fast", batch_size=8, window_size=60, | |
| minimum_patch_size=5, threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0, initialize="identity", tracking_window_size=0 | |
| ): | |
| self.inference_mode = inference_mode | |
| self.batch_size = batch_size | |
| self.window_size = window_size | |
| self.ebsynth_config = { | |
| "minimum_patch_size": minimum_patch_size, | |
| "threads_per_block": threads_per_block, | |
| "num_iter": num_iter, | |
| "gpu_id": gpu_id, | |
| "guide_weight": guide_weight, | |
| "initialize": initialize, | |
| "tracking_window_size": tracking_window_size | |
| } | |
| def from_model_manager(model_manager, **kwargs): | |
| # TODO: fetch GPU ID from model_manager | |
| return FastBlendSmoother(**kwargs) | |
| def inference_fast(self, frames_guide, frames_style): | |
| table_manager = TableManager() | |
| patch_match_engine = PyramidPatchMatcher( | |
| image_height=frames_style[0].shape[0], | |
| image_width=frames_style[0].shape[1], | |
| channel=3, | |
| **self.ebsynth_config | |
| ) | |
| # left part | |
| table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, self.batch_size, desc="Fast Mode Step 1/4") | |
| table_l = table_manager.remapping_table_to_blending_table(table_l) | |
| table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 2/4") | |
| # right part | |
| table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, self.batch_size, desc="Fast Mode Step 3/4") | |
| table_r = table_manager.remapping_table_to_blending_table(table_r) | |
| table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 4/4")[::-1] | |
| # merge | |
| frames = [] | |
| for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r): | |
| weight_m = -1 | |
| weight = weight_l + weight_m + weight_r | |
| frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight) | |
| frames.append(frame) | |
| frames = [frame.clip(0, 255).astype("uint8") for frame in frames] | |
| frames = [Image.fromarray(frame) for frame in frames] | |
| return frames | |
| def inference_balanced(self, frames_guide, frames_style): | |
| patch_match_engine = PyramidPatchMatcher( | |
| image_height=frames_style[0].shape[0], | |
| image_width=frames_style[0].shape[1], | |
| channel=3, | |
| **self.ebsynth_config | |
| ) | |
| output_frames = [] | |
| # tasks | |
| n = len(frames_style) | |
| tasks = [] | |
| for target in range(n): | |
| for source in range(target - self.window_size, target + self.window_size + 1): | |
| if source >= 0 and source < n and source != target: | |
| tasks.append((source, target)) | |
| # run | |
| frames = [(None, 1) for i in range(n)] | |
| for batch_id in tqdm(range(0, len(tasks), self.batch_size), desc="Balanced Mode"): | |
| tasks_batch = tasks[batch_id: min(batch_id+self.batch_size, len(tasks))] | |
| source_guide = np.stack([frames_guide[source] for source, target in tasks_batch]) | |
| target_guide = np.stack([frames_guide[target] for source, target in tasks_batch]) | |
| source_style = np.stack([frames_style[source] for source, target in tasks_batch]) | |
| _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) | |
| for (source, target), result in zip(tasks_batch, target_style): | |
| frame, weight = frames[target] | |
| if frame is None: | |
| frame = frames_style[target] | |
| frames[target] = ( | |
| frame * (weight / (weight + 1)) + result / (weight + 1), | |
| weight + 1 | |
| ) | |
| if weight + 1 == min(n, target + self.window_size + 1) - max(0, target - self.window_size): | |
| frame = frame.clip(0, 255).astype("uint8") | |
| output_frames.append(Image.fromarray(frame)) | |
| frames[target] = (None, 1) | |
| return output_frames | |
| def inference_accurate(self, frames_guide, frames_style): | |
| patch_match_engine = PyramidPatchMatcher( | |
| image_height=frames_style[0].shape[0], | |
| image_width=frames_style[0].shape[1], | |
| channel=3, | |
| use_mean_target_style=True, | |
| **self.ebsynth_config | |
| ) | |
| output_frames = [] | |
| # run | |
| n = len(frames_style) | |
| for target in tqdm(range(n), desc="Accurate Mode"): | |
| l, r = max(target - self.window_size, 0), min(target + self.window_size + 1, n) | |
| remapped_frames = [] | |
| for i in range(l, r, self.batch_size): | |
| j = min(i + self.batch_size, r) | |
| source_guide = np.stack([frames_guide[source] for source in range(i, j)]) | |
| target_guide = np.stack([frames_guide[target]] * (j - i)) | |
| source_style = np.stack([frames_style[source] for source in range(i, j)]) | |
| _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) | |
| remapped_frames.append(target_style) | |
| frame = np.concatenate(remapped_frames, axis=0).mean(axis=0) | |
| frame = frame.clip(0, 255).astype("uint8") | |
| output_frames.append(Image.fromarray(frame)) | |
| return output_frames | |
| def release_vram(self): | |
| mempool = cp.get_default_memory_pool() | |
| pinned_mempool = cp.get_default_pinned_memory_pool() | |
| mempool.free_all_blocks() | |
| pinned_mempool.free_all_blocks() | |
| def __call__(self, rendered_frames, original_frames=None, **kwargs): | |
| rendered_frames = [np.array(frame) for frame in rendered_frames] | |
| original_frames = [np.array(frame) for frame in original_frames] | |
| if self.inference_mode == "fast": | |
| output_frames = self.inference_fast(original_frames, rendered_frames) | |
| elif self.inference_mode == "balanced": | |
| output_frames = self.inference_balanced(original_frames, rendered_frames) | |
| elif self.inference_mode == "accurate": | |
| output_frames = self.inference_accurate(original_frames, rendered_frames) | |
| else: | |
| raise ValueError("inference_mode must be fast, balanced or accurate") | |
| self.release_vram() | |
| return output_frames | |