Spaces:
Running
Running
| from ..models.hunyuan_dit import HunyuanDiT | |
| from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder | |
| from ..models.sdxl_vae_encoder import SDXLVAEEncoder | |
| from ..models.sdxl_vae_decoder import SDXLVAEDecoder | |
| from ..models import ModelManager | |
| from ..prompts import HunyuanDiTPrompter | |
| from ..schedulers import EnhancedDDIMScheduler | |
| import torch | |
| from tqdm import tqdm | |
| from PIL import Image | |
| import numpy as np | |
| class ImageSizeManager: | |
| def __init__(self): | |
| pass | |
| def _to_tuple(self, x): | |
| if isinstance(x, int): | |
| return x, x | |
| else: | |
| return x | |
| def get_fill_resize_and_crop(self, src, tgt): | |
| th, tw = self._to_tuple(tgt) | |
| h, w = self._to_tuple(src) | |
| tr = th / tw # base 分辨率 | |
| r = h / w # 目标分辨率 | |
| # resize | |
| if r > tr: | |
| resize_height = th | |
| resize_width = int(round(th / h * w)) | |
| else: | |
| resize_width = tw | |
| resize_height = int(round(tw / w * h)) # 根据base分辨率,将目标分辨率resize下来 | |
| crop_top = int(round((th - resize_height) / 2.0)) | |
| crop_left = int(round((tw - resize_width) / 2.0)) | |
| return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
| def get_meshgrid(self, start, *args): | |
| if len(args) == 0: | |
| # start is grid_size | |
| num = self._to_tuple(start) | |
| start = (0, 0) | |
| stop = num | |
| elif len(args) == 1: | |
| # start is start, args[0] is stop, step is 1 | |
| start = self._to_tuple(start) | |
| stop = self._to_tuple(args[0]) | |
| num = (stop[0] - start[0], stop[1] - start[1]) | |
| elif len(args) == 2: | |
| # start is start, args[0] is stop, args[1] is num | |
| start = self._to_tuple(start) # 左上角 eg: 12,0 | |
| stop = self._to_tuple(args[0]) # 右下角 eg: 20,32 | |
| num = self._to_tuple(args[1]) # 目标大小 eg: 32,124 | |
| else: | |
| raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}") | |
| grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32) # 12-20 中间差值32份 0-32 中间差值124份 | |
| grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32) | |
| grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
| grid = np.stack(grid, axis=0) # [2, W, H] | |
| return grid | |
| def get_2d_rotary_pos_embed(self, embed_dim, start, *args, use_real=True): | |
| grid = self.get_meshgrid(start, *args) # [2, H, w] | |
| grid = grid.reshape([2, 1, *grid.shape[1:]]) # 返回一个采样矩阵 分辨率与目标分辨率一致 | |
| pos_embed = self.get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real) | |
| return pos_embed | |
| def get_2d_rotary_pos_embed_from_grid(self, embed_dim, grid, use_real=False): | |
| assert embed_dim % 4 == 0 | |
| # use half of dimensions to encode grid_h | |
| emb_h = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4) | |
| emb_w = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4) | |
| if use_real: | |
| cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2) | |
| sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2) | |
| return cos, sin | |
| else: | |
| emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2) | |
| return emb | |
| def get_1d_rotary_pos_embed(self, dim: int, pos, theta: float = 10000.0, use_real=False): | |
| if isinstance(pos, int): | |
| pos = np.arange(pos) | |
| freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2] | |
| t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S] | |
| freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2] | |
| if use_real: | |
| freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D] | |
| freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D] | |
| return freqs_cos, freqs_sin | |
| else: | |
| freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2] | |
| return freqs_cis | |
| def calc_rope(self, height, width): | |
| patch_size = 2 | |
| head_size = 88 | |
| th = height // 8 // patch_size | |
| tw = width // 8 // patch_size | |
| base_size = 512 // 8 // patch_size | |
| start, stop = self.get_fill_resize_and_crop((th, tw), base_size) | |
| sub_args = [start, stop, (th, tw)] | |
| rope = self.get_2d_rotary_pos_embed(head_size, *sub_args) | |
| return rope | |
| class HunyuanDiTImagePipeline(torch.nn.Module): | |
| def __init__(self, device="cuda", torch_dtype=torch.float16): | |
| super().__init__() | |
| self.scheduler = EnhancedDDIMScheduler(prediction_type="v_prediction", beta_start=0.00085, beta_end=0.03) | |
| self.prompter = HunyuanDiTPrompter() | |
| self.device = device | |
| self.torch_dtype = torch_dtype | |
| self.image_size_manager = ImageSizeManager() | |
| # models | |
| self.text_encoder: HunyuanDiTCLIPTextEncoder = None | |
| self.text_encoder_t5: HunyuanDiTT5TextEncoder = None | |
| self.dit: HunyuanDiT = None | |
| self.vae_decoder: SDXLVAEDecoder = None | |
| self.vae_encoder: SDXLVAEEncoder = None | |
| def fetch_main_models(self, model_manager: ModelManager): | |
| self.text_encoder = model_manager.hunyuan_dit_clip_text_encoder | |
| self.text_encoder_t5 = model_manager.hunyuan_dit_t5_text_encoder | |
| self.dit = model_manager.hunyuan_dit | |
| self.vae_decoder = model_manager.vae_decoder | |
| self.vae_encoder = model_manager.vae_encoder | |
| def fetch_prompter(self, model_manager: ModelManager): | |
| self.prompter.load_from_model_manager(model_manager) | |
| def from_model_manager(model_manager: ModelManager): | |
| pipe = HunyuanDiTImagePipeline( | |
| device=model_manager.device, | |
| torch_dtype=model_manager.torch_dtype, | |
| ) | |
| pipe.fetch_main_models(model_manager) | |
| pipe.fetch_prompter(model_manager) | |
| return pipe | |
| def preprocess_image(self, image): | |
| image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) | |
| return image | |
| def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
| image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] | |
| image = image.cpu().permute(1, 2, 0).numpy() | |
| image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) | |
| return image | |
| def prepare_extra_input(self, height=1024, width=1024, tiled=False, tile_size=64, tile_stride=32, batch_size=1): | |
| if tiled: | |
| height, width = tile_size * 16, tile_size * 16 | |
| image_meta_size = torch.as_tensor([width, height, width, height, 0, 0]).to(device=self.device) | |
| freqs_cis_img = self.image_size_manager.calc_rope(height, width) | |
| image_meta_size = torch.stack([image_meta_size] * batch_size) | |
| return { | |
| "size_emb": image_meta_size, | |
| "freq_cis_img": (freqs_cis_img[0].to(dtype=self.torch_dtype, device=self.device), freqs_cis_img[1].to(dtype=self.torch_dtype, device=self.device)), | |
| "tiled": tiled, | |
| "tile_size": tile_size, | |
| "tile_stride": tile_stride | |
| } | |
| def __call__( | |
| self, | |
| prompt, | |
| negative_prompt="", | |
| cfg_scale=7.5, | |
| clip_skip=1, | |
| clip_skip_2=1, | |
| input_image=None, | |
| reference_images=[], | |
| reference_strengths=[0.4], | |
| denoising_strength=1.0, | |
| height=1024, | |
| width=1024, | |
| num_inference_steps=20, | |
| tiled=False, | |
| tile_size=64, | |
| tile_stride=32, | |
| progress_bar_cmd=tqdm, | |
| progress_bar_st=None, | |
| ): | |
| # Prepare scheduler | |
| self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
| # Prepare latent tensors | |
| noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) | |
| if input_image is not None: | |
| image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) | |
| latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype) | |
| latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
| else: | |
| latents = noise.clone() | |
| # Prepare reference latents | |
| reference_latents = [] | |
| for reference_image in reference_images: | |
| reference_image = self.preprocess_image(reference_image).to(device=self.device, dtype=self.torch_dtype) | |
| reference_latents.append(self.vae_encoder(reference_image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype)) | |
| # Encode prompts | |
| prompt_emb_posi, attention_mask_posi, prompt_emb_t5_posi, attention_mask_t5_posi = self.prompter.encode_prompt( | |
| self.text_encoder, | |
| self.text_encoder_t5, | |
| prompt, | |
| clip_skip=clip_skip, | |
| clip_skip_2=clip_skip_2, | |
| positive=True, | |
| device=self.device | |
| ) | |
| if cfg_scale != 1.0: | |
| prompt_emb_nega, attention_mask_nega, prompt_emb_t5_nega, attention_mask_t5_nega = self.prompter.encode_prompt( | |
| self.text_encoder, | |
| self.text_encoder_t5, | |
| negative_prompt, | |
| clip_skip=clip_skip, | |
| clip_skip_2=clip_skip_2, | |
| positive=False, | |
| device=self.device | |
| ) | |
| # Prepare positional id | |
| extra_input = self.prepare_extra_input(height, width, tiled, tile_size) | |
| # Denoise | |
| for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
| timestep = torch.tensor([timestep]).to(dtype=self.torch_dtype, device=self.device) | |
| # In-context reference | |
| for reference_latents_, reference_strength in zip(reference_latents, reference_strengths): | |
| if progress_id < num_inference_steps * reference_strength: | |
| noisy_reference_latents = self.scheduler.add_noise(reference_latents_, noise, self.scheduler.timesteps[progress_id]) | |
| self.dit( | |
| noisy_reference_latents, | |
| prompt_emb_posi, prompt_emb_t5_posi, attention_mask_posi, attention_mask_t5_posi, | |
| timestep, | |
| **extra_input, | |
| to_cache=True | |
| ) | |
| # Positive side | |
| noise_pred_posi = self.dit( | |
| latents, | |
| prompt_emb_posi, prompt_emb_t5_posi, attention_mask_posi, attention_mask_t5_posi, | |
| timestep, | |
| **extra_input, | |
| ) | |
| if cfg_scale != 1.0: | |
| # Negative side | |
| noise_pred_nega = self.dit( | |
| latents, | |
| prompt_emb_nega, prompt_emb_t5_nega, attention_mask_nega, attention_mask_t5_nega, | |
| timestep, | |
| **extra_input | |
| ) | |
| # Classifier-free guidance | |
| noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
| else: | |
| noise_pred = noise_pred_posi | |
| latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
| if progress_bar_st is not None: | |
| progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
| # Decode image | |
| image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| return image | |