vikranth1111 commited on
Commit
71d0eb2
·
verified ·
1 Parent(s): 79efdcb

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +63 -0
  2. keras_model.h5 +3 -0
  3. labels.txt +6 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ from cvzone.HandTrackingModule import HandDetector
3
+ from cvzone.ClassificationModule import Classifier
4
+ import numpy as np
5
+ import math
6
+
7
+ cap = cv2.VideoCapture(0)
8
+ detector = HandDetector(maxHands=1)
9
+ classifier = Classifier("keras_model.h5", "labels.txt")
10
+ offset = 20
11
+ imgSize = 300
12
+ counter = 0
13
+
14
+ labels = ["iam", "ok", "going", "no", "yes" , "hi",]
15
+
16
+ while True:
17
+ success, img = cap.read()
18
+ imgOutput = img.copy()
19
+ hands, img = detector.findHands(img)
20
+ if hands:
21
+ hand = hands[0]
22
+ x, y, w, h = hand['bbox']
23
+
24
+ imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
25
+
26
+ imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
27
+
28
+ # Add a check to ensure imgCrop is not empty
29
+ if imgCrop.size == 0:
30
+ continue
31
+
32
+ imgCropShape = imgCrop.shape
33
+ aspectRatio = h / w
34
+
35
+ if aspectRatio > 1:
36
+ k = imgSize / h
37
+ wCal = math.ceil(k * w)
38
+ imgResize = cv2.resize(imgCrop, (wCal, imgSize))
39
+ imgResizeShape = imgResize.shape
40
+ wGap = math.ceil((imgSize - wCal) / 2)
41
+ imgWhite[:, wGap: wCal + wGap] = imgResize
42
+ prediction, index = classifier.getPrediction(imgWhite, draw=False)
43
+ print(prediction, index)
44
+
45
+ else:
46
+ k = imgSize / w
47
+ hCal = math.ceil(k * h)
48
+ imgResize = cv2.resize(imgCrop, (imgSize, hCal))
49
+ imgResizeShape = imgResize.shape
50
+ hGap = math.ceil((imgSize - hCal) / 2)
51
+ imgWhite[hGap: hCal + hGap, :] = imgResize
52
+ prediction, index = classifier.getPrediction(imgWhite, draw=False)
53
+
54
+ cv2.rectangle(imgOutput, (x - offset, y - offset - 70), (x - offset + 400, y - offset + 60 - 50), (0, 255, 0),
55
+ cv2.FILLED)
56
+ cv2.putText(imgOutput, labels[index], (x, y - 30), cv2.FONT_HERSHEY_COMPLEX, 2, (0, 0, 0), 2)
57
+ cv2.rectangle(imgOutput, (x - offset, y - offset), (x + w + offset, y + h + offset), (0, 255, 0), 4)
58
+
59
+ cv2.imshow('ImageCrop', imgCrop)
60
+ cv2.imshow('ImageWhite', imgWhite)
61
+
62
+ cv2.imshow('Image', imgOutput)
63
+ cv2.waitKey(1)
keras_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b639c6b7cfb968077c7539ac921341b5dd3c8aabd8cbddd8357f356a30f43d46
3
+ size 2457008
labels.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ 0 iam
2
+ 1 ok
3
+ 2 going
4
+ 3 no
5
+ 4 yes
6
+ 5 hi