vikranth1111's picture
Update app.py
534fa54 verified
import cv2
import gradio as gr
from cvzone.HandTrackingModule import HandDetector
from cvzone.ClassificationModule import Classifier
import numpy as np
import math
# Load HandDetector and Classifier
detector = HandDetector(maxHands=1)
classifier = Classifier("keras_model.h5", "labels.txt")
offset = 20
imgSize = 300
# Try different camera indices until a valid one is found
camera_index = 0
cap = None
while cap is None or not cap.isOpened():
cap = cv2.VideoCapture(camera_index)
if cap is None or not cap.isOpened():
camera_index += 1
print(f"Error: Could not open camera with index {camera_index - 1}. Trying index {camera_index}.")
if cap.isOpened():
print(f"Camera opened successfully with index {camera_index}.")
else:
print("Error: No valid camera index found.")
exit()
def classify_hand(img):
imgOutput = img.copy()
# Detect hands
hands, _ = detector.findHands(img)
if hands:
hand = hands[0]
x, y, w, h = hand['bbox']
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
if imgCrop.size != 0:
imgCropShape = imgCrop.shape
aspectRatio = h / w
if aspectRatio > 1:
k = imgSize / h
wCal = math.ceil(k * w)
imgResize = cv2.resize(imgCrop, (wCal, imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((imgSize - wCal) / 2)
imgWhite[:, wGap: wCal + wGap] = imgResize
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap: hCal + hGap, :] = imgResize
# Get hand gesture prediction
prediction, index = classifier.getPrediction(imgWhite, draw=False)
# Draw bounding box and label
cv2.rectangle(imgOutput, (x - offset, y - offset - 70), (x - offset + 400, y - offset + 60 - 50), (0, 255, 0),
cv2.FILLED)
cv2.putText(imgOutput, labels[index], (x, y - 30), cv2.FONT_HERSHEY_COMPLEX, 2, (0, 0, 0), 2)
cv2.rectangle(imgOutput, (x - offset, y - offset), (x + w + offset, y + h + offset), (0, 255, 0), 4)
return imgOutput
iface = gr.Interface(fn=classify_hand, inputs='webcam', outputs='image', live=True)
iface.launch()