Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +28 -0
- .gitignore +11 -0
- .python-version +1 -0
- README.md +2 -8
- data/gita_data.csv +0 -0
- db.py +78 -0
- main.py +94 -0
- pyproject.toml +18 -0
- requirements.txt +10 -0
- uv.lock +0 -0
.github/workflows/update_space.yml
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Run Python script
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
|
| 8 |
+
jobs:
|
| 9 |
+
build:
|
| 10 |
+
runs-on: ubuntu-latest
|
| 11 |
+
|
| 12 |
+
steps:
|
| 13 |
+
- name: Checkout
|
| 14 |
+
uses: actions/checkout@v2
|
| 15 |
+
|
| 16 |
+
- name: Set up Python
|
| 17 |
+
uses: actions/setup-python@v2
|
| 18 |
+
with:
|
| 19 |
+
python-version: '3.9'
|
| 20 |
+
|
| 21 |
+
- name: Install Gradio
|
| 22 |
+
run: python -m pip install gradio
|
| 23 |
+
|
| 24 |
+
- name: Log in to Hugging Face
|
| 25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
| 26 |
+
|
| 27 |
+
- name: Deploy to Spaces
|
| 28 |
+
run: gradio deploy
|
.gitignore
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python-generated files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[oc]
|
| 4 |
+
build/
|
| 5 |
+
dist/
|
| 6 |
+
wheels/
|
| 7 |
+
*.egg-info
|
| 8 |
+
.env
|
| 9 |
+
|
| 10 |
+
# Virtual environments
|
| 11 |
+
.venv
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.12
|
README.md
CHANGED
|
@@ -1,12 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: pink
|
| 5 |
-
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.38.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Bhagavat_Gita_Chat
|
| 3 |
+
app_file: main.py
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
| 5 |
sdk_version: 5.38.0
|
|
|
|
|
|
|
| 6 |
---
|
|
|
|
|
|
data/gita_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import chromadb
|
| 2 |
+
from chromadb.config import Settings
|
| 3 |
+
import json
|
| 4 |
+
import csv
|
| 5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 7 |
+
from langchain_community.embeddings import OpenAIEmbeddings
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class MyDatabase:
|
| 11 |
+
def __init__(self):
|
| 12 |
+
# Settings(persist_directory="./chroma_db")
|
| 13 |
+
self.chroma_client = chromadb.Client()
|
| 14 |
+
self.initialize()
|
| 15 |
+
|
| 16 |
+
def get_collection(self):
|
| 17 |
+
return self.chroma_client.get_or_create_collection(name="bhagavat_gita")
|
| 18 |
+
|
| 19 |
+
def initialize(self):
|
| 20 |
+
print("Adding Data ...")
|
| 21 |
+
collection = self.get_collection()
|
| 22 |
+
# Read CSV data into a list of dictionaries
|
| 23 |
+
print("Loading Bhagavat Gita ...")
|
| 24 |
+
with open(
|
| 25 |
+
"./data/gita_data.csv", mode="r", newline="", encoding="utf-8"
|
| 26 |
+
) as csvfile:
|
| 27 |
+
documents = list(csv.DictReader(csvfile))
|
| 28 |
+
# with open("./gita_data.json", "r") as f:
|
| 29 |
+
# documents = json.load(f)
|
| 30 |
+
with open("./data/gita_data_new.json", "w") as f:
|
| 31 |
+
json.dump(documents, f, indent=1)
|
| 32 |
+
collection.add(
|
| 33 |
+
documents=[document["translation"] for document in documents],
|
| 34 |
+
metadatas=[
|
| 35 |
+
{
|
| 36 |
+
"source": "bhagavat_gita",
|
| 37 |
+
"chapter_number": document["chapter_number"],
|
| 38 |
+
"verse_number": document["chapter_verse"],
|
| 39 |
+
}
|
| 40 |
+
for document in documents
|
| 41 |
+
],
|
| 42 |
+
# [
|
| 43 |
+
# {"source": "article1"},
|
| 44 |
+
# {"source": "article2"},
|
| 45 |
+
# {"source": "article3"},
|
| 46 |
+
# ],
|
| 47 |
+
# ids=["doc1", "doc2", "doc3"],
|
| 48 |
+
ids=[f"doc{i}" for i, document in enumerate(documents)],
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# print("Loading Vishnu Puranam ...")
|
| 52 |
+
# loader = PyPDFLoader("./data/vishnu_puranam.pdf")
|
| 53 |
+
# pdfDocument = loader.load()
|
| 54 |
+
# print("pdfDocument", pdfDocument)
|
| 55 |
+
# with open("./data/vishnu_puranam.json","w") as f:
|
| 56 |
+
# json.dump([doc.model_dump_json() for doc in pdfDocument], f, indent=1)
|
| 57 |
+
|
| 58 |
+
# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
| 59 |
+
# chunked_documents = text_splitter.split_documents([pdfDocument])
|
| 60 |
+
# print(chunked_documents)
|
| 61 |
+
print("Added data ...")
|
| 62 |
+
|
| 63 |
+
def get_data(self, query: str = "is knowledge superior to action?"):
|
| 64 |
+
print("Querying data ...")
|
| 65 |
+
collection = self.get_collection()
|
| 66 |
+
results = collection.query(
|
| 67 |
+
query_texts=[
|
| 68 |
+
query,
|
| 69 |
+
], # Chroma will embed this for you
|
| 70 |
+
n_results=5, # how many results to return
|
| 71 |
+
)
|
| 72 |
+
print(json.dumps(results, indent=2))
|
| 73 |
+
return results
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# mydb = MyDatabase()
|
| 77 |
+
# mydb.initialize()
|
| 78 |
+
# mydb.get_data("What is karma?")
|
main.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import TypedDict, override
|
| 2 |
+
from langgraph.constants import END, START
|
| 3 |
+
from langgraph.graph.state import StateGraph
|
| 4 |
+
from typing_extensions import Annotated
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
from langgraph.graph.message import add_messages
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from langchain_openai import ChatOpenAI
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
|
| 11 |
+
from db import MyDatabase
|
| 12 |
+
|
| 13 |
+
load_dotenv(override=True)
|
| 14 |
+
mydb = MyDatabase()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class State(TypedDict):
|
| 18 |
+
messages: Annotated[list, add_messages]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
graph_builder = StateGraph(State)
|
| 22 |
+
|
| 23 |
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def chatNode(state: State):
|
| 27 |
+
messages = state["messages"]
|
| 28 |
+
print("messages = ", messages)
|
| 29 |
+
responseMessage = llm.invoke(messages)
|
| 30 |
+
newState = State(messages=[responseMessage])
|
| 31 |
+
return newState
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def encryptNode(state: State):
|
| 35 |
+
messages = state["messages"]
|
| 36 |
+
messages[-1].content += "\n--------- \n with love, \n##### Krishna"
|
| 37 |
+
newState = State(messages=messages)
|
| 38 |
+
return newState
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
graph_builder.add_node("MyChatNode", chatNode)
|
| 42 |
+
graph_builder.add_node("MyEncryptNode", encryptNode)
|
| 43 |
+
graph_builder.add_edge(START, "MyChatNode")
|
| 44 |
+
graph_builder.add_edge("MyChatNode", "MyEncryptNode")
|
| 45 |
+
graph_builder.add_edge("MyEncryptNode", END)
|
| 46 |
+
graph = graph_builder.compile()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def chat(message, history):
|
| 50 |
+
# Ensure history is a list of message dicts
|
| 51 |
+
relevant_sections = mydb.get_data(message)
|
| 52 |
+
if not history:
|
| 53 |
+
history = [
|
| 54 |
+
{
|
| 55 |
+
"role": "system",
|
| 56 |
+
"content": f"""You are a religious researcher, expert in Hindu literature like Bhagavat Gita.
|
| 57 |
+
User asks questions and you will answer from the context given below. it is important that you answer ONLY from the context given below and nowhere else.
|
| 58 |
+
In your response, mention which chapter and verses from which you came up with this explanation.
|
| 59 |
+
DO NOT talk about other spiritual traditions. Limit yourself to the context at all times.
|
| 60 |
+
organize your response under subheadings for clarity and keep it simple in terms of language and brief. Do not add your interpretation or additional commentary.
|
| 61 |
+
Answer any question in the context of Bhagavat Gita (particularly from the context given below). If you dont know the answer, just say so.
|
| 62 |
+
|
| 63 |
+
here is the context:
|
| 64 |
+
{relevant_sections}
|
| 65 |
+
""",
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"role" : "assistant",
|
| 69 |
+
"content" : "Namaste, Ask me any questions on Bhagavat Gita!"
|
| 70 |
+
}
|
| 71 |
+
]
|
| 72 |
+
initial_state = State(messages=history + [{"role": "user", "content": message}])
|
| 73 |
+
print("initial_state = ", initial_state)
|
| 74 |
+
response = graph.invoke(initial_state)
|
| 75 |
+
return response["messages"][-1].content
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def main():
|
| 79 |
+
print("Hello from langgraph-demo!")
|
| 80 |
+
gr.ChatInterface(
|
| 81 |
+
chat,
|
| 82 |
+
type="messages",
|
| 83 |
+
title="Let's chat on Bhagavat Gita",
|
| 84 |
+
examples=[
|
| 85 |
+
"What does Gita say about Karma?",
|
| 86 |
+
"Why did God create this world?",
|
| 87 |
+
"What is the relationship between knowledge and action?",
|
| 88 |
+
"Who are friends and enemies per Gita?"
|
| 89 |
+
],
|
| 90 |
+
).launch()
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
main()
|
pyproject.toml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "langgraph-demo"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Add your description here"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.12"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"chromadb>=1.0.15",
|
| 9 |
+
"dotenv>=0.9.9",
|
| 10 |
+
"gradio>=5.38.0",
|
| 11 |
+
"ipython>=9.4.0",
|
| 12 |
+
"langchain>=0.3.26",
|
| 13 |
+
"langchain-community>=0.3.27",
|
| 14 |
+
"langchain-openai>=0.3.28",
|
| 15 |
+
"langgraph>=0.5.3",
|
| 16 |
+
"pydantic>=2.11.7",
|
| 17 |
+
"pypdf>=5.8.0",
|
| 18 |
+
]
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
chromadb
|
| 2 |
+
dotenv
|
| 3 |
+
gradio
|
| 4 |
+
ipython
|
| 5 |
+
langchain
|
| 6 |
+
langchain-community
|
| 7 |
+
langchain-openai
|
| 8 |
+
langgraph
|
| 9 |
+
pydantic
|
| 10 |
+
pypdf
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|