umair894 commited on
Commit
720c059
·
verified ·
1 Parent(s): 9ab4214

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -41
app.py CHANGED
@@ -1,29 +1,18 @@
1
  import gradio as gr
2
  import os
3
- import spaces
4
- from transformers import GemmaTokenizer, AutoModelForCausalLM
5
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
  from threading import Thread
 
 
 
7
 
8
- # Set an environment variable
9
- #HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
-
11
-
12
- DESCRIPTION = '''
13
- <div>
14
- <h1 style="text-align: center;">Llama3 8B Fine-tuned</h1>
15
- '''
16
-
17
- # LICENSE = """
18
- # """
19
 
20
  PLACEHOLDER = """
21
  <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
22
- <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">I am Vikk, AI legel Assistant, Ask me anything</p>
23
  </div>
24
  """
25
 
26
-
27
  css = """
28
  h1 {
29
  text-align: center;
@@ -37,20 +26,42 @@ h1 {
37
  }
38
  """
39
 
40
- # Load the tokenizer and model
41
- tokenizer = AutoTokenizer.from_pretrained("umair894/llama3")
42
- model = AutoModelForCausalLM.from_pretrained("umair894/llama3", device_map="cuda:0") # to("auto")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  terminators = [
44
  tokenizer.eos_token_id,
45
- tokenizer.convert_tokens_to_ids("<|eot_id|>") #eos_token
46
  ]
47
 
48
- #@spaces.GPU(duration=120)
 
 
 
 
49
  def chat_llama3_8b(message: str,
50
- history: list,
51
- temperature: float,
52
- max_new_tokens: int
53
- ) -> str:
54
  """
55
  Generate a streaming response using the llama3-8b model.
56
  Args:
@@ -61,24 +72,30 @@ def chat_llama3_8b(message: str,
61
  Returns:
62
  str: The generated response.
63
  """
 
64
  conversation = []
65
  for user, assistant in history:
66
- conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
67
- conversation.append({"role": "user", "content": message})
 
 
 
 
 
 
 
68
 
69
- input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
70
-
71
  streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
72
 
73
  generate_kwargs = dict(
74
- input_ids= input_ids,
75
  streamer=streamer,
76
  max_new_tokens=max_new_tokens,
77
  do_sample=True,
78
  temperature=temperature,
79
  eos_token_id=terminators,
80
  )
81
- # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
82
  if temperature == 0:
83
  generate_kwargs['do_sample'] = False
84
 
@@ -88,17 +105,13 @@ def chat_llama3_8b(message: str,
88
  outputs = []
89
  for text in streamer:
90
  outputs.append(text)
91
- #print(outputs)
92
  yield "".join(outputs)
93
-
94
 
95
  # Gradio block
96
- chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='ChatInterface')
97
 
98
  with gr.Blocks(fill_height=True, css=css) as demo:
99
 
100
- gr.Markdown(DESCRIPTION)
101
- #gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
102
  gr.ChatInterface(
103
  fn=chat_llama3_8b,
104
  chatbot=chatbot,
@@ -117,14 +130,13 @@ with gr.Blocks(fill_height=True, css=css) as demo:
117
  value=512,
118
  label="Max new tokens",
119
  render=False ),
120
- ],
121
  examples=[
122
- ['I got a ticket.'],
123
- ],
124
  cache_examples=False,
125
- )
126
 
127
- #gr.Markdown(LICENSE)
128
 
129
  if __name__ == "__main__":
130
- demo.launch()
 
1
  import gradio as gr
2
  import os
 
 
3
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
4
  from threading import Thread
5
+ from unsloth.chat_templates import get_chat_template
6
+ from unsloth import FastLanguageModel
7
+ import torch
8
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  PLACEHOLDER = """
11
  <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
12
+
13
  </div>
14
  """
15
 
 
16
  css = """
17
  h1 {
18
  text-align: center;
 
26
  }
27
  """
28
 
29
+ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
30
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
31
+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
32
+
33
+ model, tokenizer = FastLanguageModel.from_pretrained(
34
+ model_name="umair894/llama3",
35
+ max_seq_length=max_seq_length,
36
+ dtype=dtype,
37
+ load_in_4bit=load_in_4bit,
38
+
39
+ )
40
+ FastLanguageModel.for_inference(model)
41
+
42
+ # Apply chat template to the tokenizer
43
+ tokenizer = get_chat_template(
44
+ tokenizer,
45
+ chat_template="llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
46
+ mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # ShareGPT style
47
+ map_eos_token=True, # Maps to </s> instead
48
+ )
49
+
50
  terminators = [
51
  tokenizer.eos_token_id,
52
+ tokenizer.convert_tokens_to_ids("")
53
  ]
54
 
55
+ # Check if terminators are None and provide a default value if needed
56
+ terminators = [token_id for token_id in terminators if token_id is not None]
57
+ if not terminators:
58
+ terminators = [tokenizer.eos_token_id] # Ensure there is a valid EOS token
59
+
60
  def chat_llama3_8b(message: str,
61
+ history: list,
62
+ temperature: float,
63
+ max_new_tokens: int
64
+ ) -> str:
65
  """
66
  Generate a streaming response using the llama3-8b model.
67
  Args:
 
72
  Returns:
73
  str: The generated response.
74
  """
75
+
76
  conversation = []
77
  for user, assistant in history:
78
+ conversation.extend([{"from": "human", "value": user}, {"from": "gpt", "value": assistant}])
79
+ conversation.append({"from": "human", "value": message})
80
+
81
+ input_ids = tokenizer.apply_chat_template(
82
+ conversation,
83
+ tokenize=True,
84
+ add_generation_prompt=True, # Must add for generation
85
+ return_tensors="pt",
86
+ ).to(model.device)
87
 
 
 
88
  streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
89
 
90
  generate_kwargs = dict(
91
+ input_ids=input_ids,
92
  streamer=streamer,
93
  max_new_tokens=max_new_tokens,
94
  do_sample=True,
95
  temperature=temperature,
96
  eos_token_id=terminators,
97
  )
98
+
99
  if temperature == 0:
100
  generate_kwargs['do_sample'] = False
101
 
 
105
  outputs = []
106
  for text in streamer:
107
  outputs.append(text)
 
108
  yield "".join(outputs)
 
109
 
110
  # Gradio block
111
+ chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
112
 
113
  with gr.Blocks(fill_height=True, css=css) as demo:
114
 
 
 
115
  gr.ChatInterface(
116
  fn=chat_llama3_8b,
117
  chatbot=chatbot,
 
130
  value=512,
131
  label="Max new tokens",
132
  render=False ),
133
+ ],
134
  examples=[
135
+ ['How can i file for a student loan case?']
136
+ ],
137
  cache_examples=False,
138
+ )
139
 
 
140
 
141
  if __name__ == "__main__":
142
+ demo.launch(debug=True)