Spaces:
Sleeping
Sleeping
talexm
commited on
Commit
•
f861dee
1
Parent(s):
73321dd
update
Browse files- anomaly_detection_tool/__init__.py +0 -0
- rag_sec/__pycache__/rag_chagu_demo.cpython-38-pytest-8.3.2.pyc +0 -0
- rag_sec/bad_query_detector.py +14 -0
- rag_sec/document_retriver.py +47 -0
- rag_sec/document_search_system.py +42 -0
- rag_sec/query_transformer.py +5 -0
- rag_sec/senamtic_response_generator.py +10 -0
anomaly_detection_tool/__init__.py
DELETED
File without changes
|
rag_sec/__pycache__/rag_chagu_demo.cpython-38-pytest-8.3.2.pyc
CHANGED
Binary files a/rag_sec/__pycache__/rag_chagu_demo.cpython-38-pytest-8.3.2.pyc and b/rag_sec/__pycache__/rag_chagu_demo.cpython-38-pytest-8.3.2.pyc differ
|
|
rag_sec/bad_query_detector.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
class BadQueryDetector:
|
4 |
+
def __init__(self):
|
5 |
+
self.detector = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
6 |
+
|
7 |
+
def is_bad_query(self, query):
|
8 |
+
result = self.detector(query)[0]
|
9 |
+
label = result["label"]
|
10 |
+
score = result["score"]
|
11 |
+
if label == "NEGATIVE" and score > 0.8:
|
12 |
+
print(f"Detected malicious query with high confidence ({score:.4f}): {query}")
|
13 |
+
return True
|
14 |
+
return False
|
rag_sec/document_retriver.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class DocumentRetriever:
|
6 |
+
def __init__(self):
|
7 |
+
self.documents = []
|
8 |
+
self.vectorizer = TfidfVectorizer()
|
9 |
+
self.index = None
|
10 |
+
|
11 |
+
def load_documents(self, source_dir):
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
data_dir = Path(source_dir)
|
15 |
+
if not data_dir.exists():
|
16 |
+
print(f"Source directory not found: {source_dir}")
|
17 |
+
return
|
18 |
+
|
19 |
+
for file in data_dir.glob("*.txt"):
|
20 |
+
with open(file, "r", encoding="utf-8") as f:
|
21 |
+
self.documents.append(f.read())
|
22 |
+
|
23 |
+
print(f"Loaded {len(self.documents)} documents.")
|
24 |
+
|
25 |
+
# Create the FAISS index
|
26 |
+
self._build_index()
|
27 |
+
|
28 |
+
def _build_index(self):
|
29 |
+
# Generate TF-IDF vectors for documents
|
30 |
+
doc_vectors = self.vectorizer.fit_transform(self.documents).toarray()
|
31 |
+
|
32 |
+
# Create FAISS index
|
33 |
+
self.index = faiss.IndexFlatL2(doc_vectors.shape[1])
|
34 |
+
self.index.add(doc_vectors.astype(np.float32))
|
35 |
+
|
36 |
+
def retrieve(self, query, top_k=5):
|
37 |
+
if not self.index:
|
38 |
+
return ["Document retrieval is not initialized."]
|
39 |
+
|
40 |
+
# Vectorize the query
|
41 |
+
query_vector = self.vectorizer.transform([query]).toarray().astype(np.float32)
|
42 |
+
|
43 |
+
# Perform FAISS search
|
44 |
+
distances, indices = self.index.search(query_vector, top_k)
|
45 |
+
|
46 |
+
# Return matching documents
|
47 |
+
return [self.documents[i] for i in indices[0] if i < len(self.documents)]
|
rag_sec/document_search_system.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bad_query_detector import BadQueryDetector
|
2 |
+
from query_transformer import QueryTransformer
|
3 |
+
from document_retriver import DocumentRetriever
|
4 |
+
from senamtic_response_generator import SemanticResponseGenerator
|
5 |
+
|
6 |
+
class DocumentSearchSystem:
|
7 |
+
def __init__(self):
|
8 |
+
self.detector = BadQueryDetector()
|
9 |
+
self.transformer = QueryTransformer()
|
10 |
+
self.retriever = DocumentRetriever()
|
11 |
+
self.response_generator = SemanticResponseGenerator()
|
12 |
+
|
13 |
+
def process_query(self, query):
|
14 |
+
if self.detector.is_bad_query(query):
|
15 |
+
return {"status": "rejected", "message": "Query blocked due to detected malicious intent."}
|
16 |
+
|
17 |
+
transformed_query = self.transformer.transform_query(query)
|
18 |
+
retrieved_docs = self.retriever.retrieve(transformed_query)
|
19 |
+
|
20 |
+
if not retrieved_docs:
|
21 |
+
return {"status": "no_results", "message": "No relevant documents found for your query."}
|
22 |
+
|
23 |
+
response = self.response_generator.generate_response(retrieved_docs)
|
24 |
+
return {"status": "success", "response": response}
|
25 |
+
|
26 |
+
|
27 |
+
def test_system():
|
28 |
+
system = DocumentSearchSystem()
|
29 |
+
system.retriever.load_documents("/path/to/documents")
|
30 |
+
|
31 |
+
# Normal query
|
32 |
+
normal_query = "Tell me about great acting performances."
|
33 |
+
print("\nNormal Query Result:")
|
34 |
+
print(system.process_query(normal_query))
|
35 |
+
|
36 |
+
# Malicious query
|
37 |
+
malicious_query = "DROP TABLE users; SELECT * FROM sensitive_data;"
|
38 |
+
print("\nMalicious Query Result:")
|
39 |
+
print(system.process_query(malicious_query))
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
test_system()
|
rag_sec/query_transformer.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class QueryTransformer:
|
2 |
+
def transform_query(self, query):
|
3 |
+
if "DROP TABLE" in query or "SELECT *" in query:
|
4 |
+
return "Your query appears to contain SQL injection elements. Please rephrase."
|
5 |
+
return query
|
rag_sec/senamtic_response_generator.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
class SemanticResponseGenerator:
|
4 |
+
def __init__(self):
|
5 |
+
self.generator = pipeline("text-generation", model="gpt2")
|
6 |
+
|
7 |
+
def generate_response(self, retrieved_docs):
|
8 |
+
combined_docs = " ".join(retrieved_docs[:2]) # Use top 2 matches
|
9 |
+
response = self.generator(f"Based on the following information: {combined_docs}", max_length=100)
|
10 |
+
return response[0]["generated_text"]
|