Spaces:
Sleeping
Sleeping
from pathlib import Path | |
import streamlit as st | |
from googlesearch import search | |
import pandas as pd | |
import os | |
from rag_sec.document_search_system import DocumentSearchSystem | |
from chainguard.blockchain_logger import BlockchainLogger | |
from PIL import Image | |
# Blockchain Logger | |
blockchain_logger = BlockchainLogger() | |
# Directory for storing uploaded files | |
UPLOAD_DIR = "uploaded_files" | |
os.makedirs(UPLOAD_DIR, exist_ok=True) | |
# Initialize DocumentSearchSystem | |
def initialize_system(): | |
"""Initialize the DocumentSearchSystem and load documents.""" | |
system = DocumentSearchSystem( | |
neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io", | |
neo4j_user="neo4j", | |
neo4j_password="HwGDOxyGS1-79nLeTiX5bx5ohoFSpvHCmTv8IRgt-lY" | |
) | |
system.retriever.load_documents() | |
return system | |
# Initialize the system | |
system = initialize_system() | |
st.title("Memora: Secure File Upload and Search with Blockchain & Neo4j") | |
st.subheader("Personalized news and global updates at your fingertips") | |
# File Upload Section | |
uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=['jpg', 'jpeg', 'png', 'mp4', 'avi']) | |
if uploaded_files: | |
for uploaded_file in uploaded_files: | |
# Save file locally | |
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
st.success(f"File saved locally: {file_path}") | |
# Display uploaded file details | |
if uploaded_file.type.startswith('image'): | |
image = Image.open(uploaded_file) | |
st.image(image, caption=uploaded_file.name, use_column_width=True) | |
# Metadata Input | |
album = st.text_input(f"Album for {uploaded_file.name}", "Default Album") | |
tags = st.text_input(f"Tags for {uploaded_file.name} (comma-separated)", "") | |
# Log Metadata and Transaction | |
if st.button(f"Log Metadata for {uploaded_file.name}"): | |
metadata = {"file_name": uploaded_file.name, "tags": tags.split(','), "album": album} | |
blockchain_details = blockchain_logger.log_data(metadata) | |
blockchain_hash = blockchain_details.get("block_hash", "N/A") | |
# Use Neo4jHandler from DocumentSearchSystem to log the transaction | |
system.neo4j_handler.log_relationships(uploaded_file.name, tags, blockchain_hash, [album]) | |
st.write(f"Metadata logged successfully! Blockchain Details: {blockchain_details}") | |
# Blockchain Integrity Validation | |
if st.button("Validate Blockchain Integrity"): | |
is_valid = blockchain_logger.is_blockchain_valid() | |
st.write("Blockchain Integrity:", "Valid β " if is_valid else "Invalid β") | |
# Document Search Section | |
st.subheader("Search Documents") | |
# Google Search: User-Specific News | |
st.subheader("1. Latest News About You") | |
user_name = st.text_input("Enter your name or handle to search for recent news", value="Talex Maxim") | |
if st.button("Search News About Me"): | |
if user_name: | |
st.write(f"Searching Google for news about **{user_name}**...") | |
try: | |
results = list(search(user_name, num_results=5)) | |
if results: | |
st.success(f"Top {len(results)} results for '{user_name}':") | |
user_news_data = {"URL": results} | |
df_user_news = pd.DataFrame(user_news_data) | |
st.dataframe(df_user_news) | |
else: | |
st.warning("No recent news found about you.") | |
except Exception as e: | |
st.error(f"An error occurred during the search: {str(e)}") | |
else: | |
st.warning("Please enter your name or handle to search.") | |
# Mocked fetch_news for demonstration; replace with actual API or data retrieval | |
def fetch_news(query, num_results=3): | |
"""Fetch news for a specific query. Replace with actual API logic.""" | |
return [ | |
{"title": f"{query} Headline 1", "link": "https://example.com/news1", "img_url": "https://via.placeholder.com/150"}, | |
{"title": f"{query} Headline 2", "link": "https://example.com/news2", "img_url": "https://via.placeholder.com/150"}, | |
{"title": f"{query} Headline 3", "link": "https://example.com/news3", "img_url": "https://via.placeholder.com/150"} | |
] | |
# Global News Carousel | |
st.title("Global News Insights") | |
categories = ["Technology", "Sports", "Politics", "Entertainment", "Science"] | |
news_results = {} | |
# Fetch Global News | |
if st.button("Fetch Global News"): | |
try: | |
for category in categories: | |
st.write(f"Fetching news for **{category}**...") | |
category_results = fetch_news(f"latest {category} news", num_results=3) | |
news_results[category] = category_results | |
# Display News Carousel | |
st.subheader("Latest Global News Carousel") | |
for category, articles in news_results.items(): | |
with st.container(): | |
st.markdown(f"### {category} News") | |
for article in articles: | |
col1, col2 = st.columns([1, 4]) | |
with col1: | |
# Display news image | |
st.image(article["img_url"], width=100) | |
with col2: | |
# Display news title and link | |
st.markdown(f"**[{article['title']}]({article['link']})**") | |
st.write(article["link"]) | |
except Exception as e: | |
st.error(f"An error occurred while fetching global news: {str(e)}") | |
# Google Search: Global News Categories | |
# st.subheader("2. Global News Insights") | |
# categories = ["Technology", "Sports", "Politics", "Entertainment", "Science"] | |
# news_results = {} | |
# | |
# if st.button("Fetch Global News"): | |
# try: | |
# for category in categories: | |
# st.write(f"Fetching news for **{category}**...") | |
# try: | |
# category_results = list(search(f"latest {category} news", num_results=3)) | |
# news_results[category] = category_results | |
# except Exception as e: | |
# news_results[category] = [f"Error fetching news: {str(e)}"] | |
# | |
# # Display results | |
# for category, articles in news_results.items(): | |
# st.write(f"### Top News in {category}:") | |
# for idx, article in enumerate(articles, start=1): | |
# st.write(f"{idx}. [Read here]({article})") | |
# except Exception as e: | |
# st.error(f"An error occurred while fetching global news: {str(e)}") | |
# Document Search | |
st.subheader("3. Search Documents") | |
query = st.text_input("Enter your query (e.g., 'sports news', 'machine learning')") | |
if st.button("Search Documents"): | |
if query: | |
result = system.process_query(query) | |
if result["status"] == "success": | |
st.success(f"Query processed successfully!") | |
st.write("### Query Response:") | |
st.write(result["response"]) | |
st.write("### Retrieved Documents:") | |
for idx, doc in enumerate(result["retrieved_documents"], start=1): | |
st.write(f"**Document {idx}:**") | |
st.write(doc[:500]) # Display the first 500 characters | |
st.write("### Blockchain Details:") | |
st.json(result["blockchain_details"]) | |
elif result["status"] == "no_results": | |
st.warning("No relevant documents found for your query.") | |
elif result["status"] == "rejected": | |
st.error(result["message"]) | |
else: | |
st.warning("Please enter a query to search.") | |
# Debugging Section | |
if st.checkbox("Show Debug Information"): | |
st.write(f"Total documents loaded: {len(system.retriever.documents)}") | |