vijul.shah commited on
Commit
5f721d1
·
1 Parent(s): 8f8ef33

Added EAR Plots. TODO: solve color jitter bug

Browse files
app.py CHANGED
@@ -100,7 +100,7 @@ def main():
100
  with st.spinner("Analyzing..."):
101
 
102
  if is_image(file_extension):
103
- input_frames, output_frames, predicted_diameters, face_frames = process_frames(
104
  cols,
105
  [input_img],
106
  tv_model,
@@ -130,7 +130,7 @@ def main():
130
 
131
  elif is_video(file_extension):
132
  output_video_path = f"{root_path}/tmp.webm"
133
- input_frames, output_frames, predicted_diameters, face_frames = process_video(
134
  cols,
135
  video_frames,
136
  tv_model,
@@ -187,6 +187,41 @@ def main():
187
  # Display the Altair chart
188
  st.altair_chart(chart, use_container_width=True)
189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
 
191
  if __name__ == "__main__":
192
  main()
 
100
  with st.spinner("Analyzing..."):
101
 
102
  if is_image(file_extension):
103
+ input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames(
104
  cols,
105
  [input_img],
106
  tv_model,
 
130
 
131
  elif is_video(file_extension):
132
  output_video_path = f"{root_path}/tmp.webm"
133
+ input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_video(
134
  cols,
135
  video_frames,
136
  tv_model,
 
187
  # Display the Altair chart
188
  st.altair_chart(chart, use_container_width=True)
189
 
190
+ if eyes_ratios is not None and len(eyes_ratios) > 0:
191
+ df = pd.DataFrame(eyes_ratios, columns=["Eyes Aspect Ratio"])
192
+ df["Frame"] = range(1, len(eyes_ratios) + 1) # Create a frame column starting from 1
193
+
194
+ # Create an Altair chart for eyes_ratios
195
+ line_chart = (
196
+ alt.Chart(df)
197
+ .mark_line(point=True, color=colors[-1]) # Set color of the line
198
+ .encode(
199
+ x=alt.X("Frame:Q", title="Frame Number"),
200
+ y=alt.Y("Eyes Aspect Ratio:Q", title="Eyes Aspect Ratio"),
201
+ tooltip=[
202
+ alt.Tooltip("Frame:Q", title="Frame Number"),
203
+ alt.Tooltip("Eyes Aspect Ratio:Q", title="Eyes Aspect Ratio"),
204
+ ],
205
+ )
206
+ # .properties(title="Eyes Aspect Ratios (EARs)")
207
+ # .configure_axis(grid=True)
208
+ )
209
+
210
+ # Create a horizontal rule at y=0.22
211
+ line1 = alt.Chart(pd.DataFrame({"y": [0.22]})).mark_rule(color="red").encode(y="y:Q")
212
+
213
+ line2 = alt.Chart(pd.DataFrame({"y": [0.25]})).mark_rule(color="blue").encode(y="y:Q")
214
+
215
+ # Combine line chart and horizontal line, and apply configuration
216
+ final_chart = line_chart.properties(title="Eyes Aspect Ratios (EARs)") + line1 + line2
217
+
218
+ # Configure axis properties at the chart level
219
+ final_chart = final_chart.configure_axis(grid=True)
220
+
221
+ # Display the Altair chart
222
+ st.subheader("Eyes Aspect Ratios (EARs)")
223
+ st.altair_chart(final_chart, use_container_width=True)
224
+
225
 
226
  if __name__ == "__main__":
227
  main()
app_utils.py CHANGED
@@ -238,6 +238,8 @@ def process_frames(
238
  ]
239
  preprocess_function = transforms.Compose(preprocess_steps)
240
 
 
 
241
  for idx, input_img in enumerate(input_imgs):
242
 
243
  img = np.array(input_img)
@@ -246,6 +248,7 @@ def process_frames(
246
  left_eye = None
247
  right_eye = None
248
  blinked = False
 
249
 
250
  if ds_results is not None and "face" in ds_results:
251
  face_img = to_pil_image(ds_results["face"])
@@ -257,6 +260,9 @@ def process_frames(
257
 
258
  if ds_results is not None and "eyes" in ds_results.keys():
259
  blinked = ds_results["eyes"]["blinked"]
 
 
 
260
  if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
261
  left_eye = ds_results["eyes"]["left_eye"]
262
  left_eye = to_pil_image(left_eye).convert("RGB")
@@ -368,7 +374,7 @@ def process_frames(
368
  show_cam_frames(output_frames, output_path, codec, video_output_placeholders)
369
  show_pred_text_frames(output_frames, output_path, predicted_diameters, codec, video_predictions_placeholders)
370
 
371
- return input_frames, output_frames, predicted_diameters, face_frames
372
 
373
 
374
  # Function to display video with autoplay and loop
@@ -468,11 +474,11 @@ def process_video(cols, video_frames, tv_model, pupil_selection, output_path, ca
468
  file_format = output_path.split(".")[-1]
469
  codec, extension = get_codec_and_extension(file_format)
470
 
471
- input_frames, output_frames, predicted_diameters, face_frames = process_frames(
472
  cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec, blink_detection
473
  )
474
 
475
- return input_frames, output_frames, predicted_diameters, face_frames
476
 
477
 
478
  # Function to convert string values to float or None
 
238
  ]
239
  preprocess_function = transforms.Compose(preprocess_steps)
240
 
241
+ eyes_ratios = []
242
+
243
  for idx, input_img in enumerate(input_imgs):
244
 
245
  img = np.array(input_img)
 
248
  left_eye = None
249
  right_eye = None
250
  blinked = False
251
+ eyes_ratio = None
252
 
253
  if ds_results is not None and "face" in ds_results:
254
  face_img = to_pil_image(ds_results["face"])
 
260
 
261
  if ds_results is not None and "eyes" in ds_results.keys():
262
  blinked = ds_results["eyes"]["blinked"]
263
+ eyes_ratio = ds_results["eyes"]["eyes_ratio"]
264
+ if eyes_ratio is not None:
265
+ eyes_ratios.append(eyes_ratio)
266
  if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
267
  left_eye = ds_results["eyes"]["left_eye"]
268
  left_eye = to_pil_image(left_eye).convert("RGB")
 
374
  show_cam_frames(output_frames, output_path, codec, video_output_placeholders)
375
  show_pred_text_frames(output_frames, output_path, predicted_diameters, codec, video_predictions_placeholders)
376
 
377
+ return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios
378
 
379
 
380
  # Function to display video with autoplay and loop
 
474
  file_format = output_path.split(".")[-1]
475
  codec, extension = get_codec_and_extension(file_format)
476
 
477
+ input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames(
478
  cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec, blink_detection
479
  )
480
 
481
+ return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios
482
 
483
 
484
  # Function to convert string values to float or None
feature_extraction/extractor_mediapipe.py CHANGED
@@ -245,6 +245,7 @@ class ExtractorMediaPipe:
245
  left_eye = self.extract_eyes_regions(image, face_landmarks, self.LEFT_EYE)
246
  right_eye = self.extract_eyes_regions(image, face_landmarks, self.RIGHT_EYE)
247
  blinked = False
 
248
 
249
  if blink_detection:
250
  mesh_coordinates = self.landmarksDetection(image, results, False)
@@ -266,7 +267,7 @@ class ExtractorMediaPipe:
266
  else:
267
  blinked = False
268
 
269
- return {"left_eye": left_eye, "right_eye": right_eye, "blinked": blinked}
270
 
271
  @staticmethod
272
  def segment_iris(iris_img):
 
245
  left_eye = self.extract_eyes_regions(image, face_landmarks, self.LEFT_EYE)
246
  right_eye = self.extract_eyes_regions(image, face_landmarks, self.RIGHT_EYE)
247
  blinked = False
248
+ eyes_ratio = None
249
 
250
  if blink_detection:
251
  mesh_coordinates = self.landmarksDetection(image, results, False)
 
267
  else:
268
  blinked = False
269
 
270
+ return {"left_eye": left_eye, "right_eye": right_eye, "blinked": blinked, "eyes_ratio": eyes_ratio}
271
 
272
  @staticmethod
273
  def segment_iris(iris_img):