Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
class Decoder4(nn.Module): | |
def __init__(self, input_dim, output_dim): | |
super(Decoder4, self).__init__() | |
self.fc1 = nn.Linear(input_dim, 256) | |
self.batch_norm1 = nn.BatchNorm1d(256) | |
self.relu1 = nn.ReLU() | |
self.dropout1 = nn.Dropout(0.5) | |
self.fc2 = nn.Linear(256, 128) | |
self.batch_norm2 = nn.BatchNorm1d(128) | |
self.relu2 = nn.ReLU() | |
self.dropout2 = nn.Dropout(0.5) | |
self.fc3 = nn.Linear(128, output_dim) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.batch_norm1(x) | |
x = self.relu1(x) | |
x = self.dropout1(x) | |
x = self.fc2(x) | |
x = self.batch_norm2(x) | |
x = self.relu2(x) | |
x = self.dropout2(x) | |
x = self.fc3(x) | |
x = self.sigmoid(x) | |
return x | |