Spaces:
Sleeping
Sleeping
""" from https://github.com/keithito/tacotron """ | |
""" | |
Cleaners are transformations that run over the input text at both training and eval time. | |
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" | |
hyperparameter. Some cleaners are English-specific. You'll typically want to use: | |
1. "english_cleaners" for English text | |
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using | |
the Unidecode library (https://pypi.python.org/pypi/Unidecode) | |
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update | |
the symbols in symbols.py to match your data). | |
""" | |
import re | |
from unidecode import unidecode | |
#from phonemizer import phonemize | |
#from phonemizer.backend import EspeakBackend | |
#backend = EspeakBackend("vi", preserve_punctuation=True, with_stress=True) | |
# Regular expression matching whitespace: | |
_whitespace_re = re.compile(r"\s+") | |
# List of (regular expression, replacement) pairs for abbreviations: | |
_abbreviations = [ | |
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) | |
for x in [ | |
("1", "một"), | |
("2", "hai"), | |
("3", "ba"), | |
("4", "bốn"), | |
("5", "năm"), | |
("6", "sáu"), | |
("7", "bảy"), | |
("8", "tám"), | |
("9", "chín"), | |
("10", "mười") | |
] | |
] | |
def expand_abbreviations(text): | |
for regex, replacement in _abbreviations: | |
text = re.sub(regex, replacement, text) | |
return text | |
def expand_numbers(text): | |
return normalize_numbers(text) | |
def lowercase(text): | |
return text.lower() | |
def collapse_whitespace(text): | |
return re.sub(_whitespace_re, " ", text) | |
def convert_to_ascii(text): | |
return unidecode(text) | |
def basic_cleaners(text): | |
"""Basic pipeline that lowercases and collapses whitespace without transliteration.""" | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def transliteration_cleaners(text): | |
"""Pipeline for non-English text that transliterates to ASCII.""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def english_cleaners(text): | |
"""Pipeline for English text, including abbreviation expansion.""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = expand_abbreviations(text) | |
phonemes = phonemize(text, language="vi", backend="espeak", strip=True) | |
phonemes = collapse_whitespace(phonemes) | |
return phonemes | |
def english_cleaners2(text): | |
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = expand_abbreviations(text) | |
phonemes = phonemize( | |
text, | |
language="vi", | |
backend="espeak", | |
strip=True, | |
preserve_punctuation=True, | |
with_stress=True, | |
) | |
phonemes = collapse_whitespace(phonemes) | |
return phonemes | |
def english_cleaners3(text): | |
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress""" | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = expand_abbreviations(text) | |
phonemes = backend.phonemize([text], strip=True)[0] | |
phonemes = collapse_whitespace(phonemes) | |
return phonemes | |