Spaces:
Running
on
Zero
Running
on
Zero
Adding LightRAG KG
Browse files- CLAUDE.md +79 -0
- app.py +30 -15
- app_old.py +0 -280
- llm_graph.py +125 -16
- main.py +0 -392
- requirements.txt +4 -2
CLAUDE.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CLAUDE.md
|
2 |
+
|
3 |
+
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
4 |
+
|
5 |
+
## Application Overview
|
6 |
+
|
7 |
+
This is a Text2Graph application that extracts knowledge graphs from natural language text. It's a Gradio web app that uses either OpenAI GPT-4.1-mini via Azure or Phi-3-mini-128k-instruct-graph via Hugging Face to extract entities and relationships from text, then visualizes them as interactive graphs.
|
8 |
+
|
9 |
+
## Architecture
|
10 |
+
|
11 |
+
- **app.py**: Main Gradio application with UI components, visualization logic, and caching
|
12 |
+
- **llm_graph.py**: Core LLMGraph class that handles model selection and knowledge graph extraction
|
13 |
+
- **cache/**: Directory for caching visualization data (first example is pre-cached for performance)
|
14 |
+
|
15 |
+
## Key Components
|
16 |
+
|
17 |
+
### LLMGraph Class (llm_graph.py)
|
18 |
+
- Supports two model backends: Azure OpenAI (GPT-4.1-mini) and Hugging Face (Phi-3-mini-128k-instruct-graph)
|
19 |
+
- Uses LightRAG for Azure OpenAI integration
|
20 |
+
- Direct inference API calls for Hugging Face models
|
21 |
+
- Extracts structured JSON with nodes (entities) and edges (relationships)
|
22 |
+
|
23 |
+
### Visualization Pipeline (app.py)
|
24 |
+
- Entity recognition visualization using spaCy's displacy
|
25 |
+
- Interactive knowledge graph using pyvis and NetworkX
|
26 |
+
- Caching system for performance optimization
|
27 |
+
- Color-coded entity types with random light colors
|
28 |
+
|
29 |
+
## Environment Setup
|
30 |
+
|
31 |
+
Required environment variables:
|
32 |
+
```
|
33 |
+
HF_TOKEN=<huggingface_token>
|
34 |
+
HF_API_ENDPOINT=<huggingface_inference_endpoint>
|
35 |
+
AZURE_OPENAI_API_KEY=<azure_openai_key>
|
36 |
+
AZURE_OPENAI_ENDPOINT=<azure_endpoint>
|
37 |
+
AZURE_OPENAI_API_VERSION=<api_version>
|
38 |
+
AZURE_OPENAI_DEPLOYMENT=<deployment_name>
|
39 |
+
AZURE_EMBEDDING_DEPLOYMENT=<embedding_deployment>
|
40 |
+
AZURE_EMBEDDING_API_VERSION=<embedding_api_version>
|
41 |
+
```
|
42 |
+
|
43 |
+
## Running the Application
|
44 |
+
|
45 |
+
```bash
|
46 |
+
# Install dependencies
|
47 |
+
pip install -r requirements.txt
|
48 |
+
|
49 |
+
# Run the Gradio app
|
50 |
+
python app.py
|
51 |
+
```
|
52 |
+
|
53 |
+
## Key Dependencies
|
54 |
+
|
55 |
+
- **gradio**: Web interface framework
|
56 |
+
- **lightrag-hku**: RAG framework for Azure OpenAI integration
|
57 |
+
- **transformers**: Hugging Face model integration
|
58 |
+
- **pyvis**: Interactive network visualization
|
59 |
+
- **networkx**: Graph data structure and algorithms
|
60 |
+
- **spacy**: Natural language processing and entity visualization
|
61 |
+
- **openai**: Azure OpenAI client
|
62 |
+
|
63 |
+
## Data Flow
|
64 |
+
|
65 |
+
1. User inputs text and selects model
|
66 |
+
2. LLMGraph.extract() processes text using selected model backend
|
67 |
+
3. JSON response contains nodes (entities) and edges (relationships)
|
68 |
+
4. Visualization functions create entity highlighting and interactive graph
|
69 |
+
5. Results cached for performance (first example only)
|
70 |
+
|
71 |
+
## Model Behavior
|
72 |
+
|
73 |
+
The application expects JSON output with this schema:
|
74 |
+
```json
|
75 |
+
{
|
76 |
+
"nodes": [{"id": "entity", "type": "broad_type", "detailed_type": "specific_type"}],
|
77 |
+
"edges": [{"from": "entity1", "to": "entity2", "label": "relationship"}]
|
78 |
+
}
|
79 |
+
```
|
app.py
CHANGED
@@ -3,7 +3,10 @@ import os
|
|
3 |
import spacy
|
4 |
import pickle
|
5 |
import random
|
|
|
6 |
import rapidjson
|
|
|
|
|
7 |
import gradio as gr
|
8 |
import networkx as nx
|
9 |
|
@@ -12,6 +15,8 @@ from pyvis.network import Network
|
|
12 |
from spacy import displacy
|
13 |
from spacy.tokens import Span
|
14 |
|
|
|
|
|
15 |
# Constants
|
16 |
TITLE = "🌐 Text2Graph: Extract Knowledge Graphs from Natural Language"
|
17 |
SUBTITLE = "✨ Extract and visualize knowledge graphs from texts in any language!"
|
@@ -53,7 +58,7 @@ def handle_text(text=""):
|
|
53 |
return " ".join(text.split())
|
54 |
|
55 |
# @spaces.GPU
|
56 |
-
def extract_kg(text="", model=None):
|
57 |
"""
|
58 |
Extract knowledge graph from text
|
59 |
"""
|
@@ -62,8 +67,9 @@ def extract_kg(text="", model=None):
|
|
62 |
if not text or not model:
|
63 |
raise gr.Error("⚠️ Both text and model must be provided!")
|
64 |
try:
|
65 |
-
|
66 |
-
result =
|
|
|
67 |
return rapidjson.loads(result)
|
68 |
except Exception as e:
|
69 |
raise gr.Error(f"❌ Extraction error: {str(e)}")
|
@@ -217,7 +223,7 @@ def create_graph(json_data):
|
|
217 |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
218 |
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
219 |
|
220 |
-
def process_and_visualize(text, model, progress=gr.Progress()):
|
221 |
"""
|
222 |
Process text and visualize knowledge graph and entities
|
223 |
"""
|
@@ -238,11 +244,12 @@ def process_and_visualize(text, model, progress=gr.Progress()):
|
|
238 |
progress(1.0, desc="Loaded from cache!")
|
239 |
return cache_data["graph_html"], cache_data["entities_viz"], cache_data["json_data"], cache_data["stats"]
|
240 |
except Exception as e:
|
241 |
-
print(f"Cache loading error: {str(e)}")
|
|
|
242 |
|
243 |
# Continue with normal processing if cache fails
|
244 |
progress(0, desc="Starting extraction...")
|
245 |
-
json_data = extract_kg(text, model)
|
246 |
|
247 |
progress(0.5, desc="Creating entity visualization...")
|
248 |
entities_viz = create_custom_entity_viz(json_data, text)
|
@@ -266,7 +273,8 @@ def process_and_visualize(text, model, progress=gr.Progress()):
|
|
266 |
with open(EXAMPLE_CACHE_FILE, 'wb') as f:
|
267 |
pickle.dump(cache_data, f)
|
268 |
except Exception as e:
|
269 |
-
print(f"Cache saving error: {str(e)}")
|
|
|
270 |
|
271 |
progress(1.0, desc="Complete!")
|
272 |
return graph_html, entities_viz, json_data, stats
|
@@ -293,20 +301,21 @@ EXAMPLES = [
|
|
293 |
les buis et à arroser les rosiers, perpétuant ainsi une tradition d'excellence horticole qui fait la fierté de la capitale française.""")],
|
294 |
]
|
295 |
|
296 |
-
def generate_first_example_cache():
|
297 |
"""
|
298 |
Generate cache for the first example if it doesn't exist when the app starts
|
299 |
"""
|
300 |
|
301 |
if not os.path.exists(EXAMPLE_CACHE_FILE):
|
302 |
-
print("Generating cache for first example...")
|
|
|
303 |
|
304 |
try:
|
305 |
text = EXAMPLES[0][0]
|
306 |
model = MODEL_LIST[0] if MODEL_LIST else None
|
307 |
|
308 |
# Extract data
|
309 |
-
json_data = extract_kg(text, model)
|
310 |
entities_viz = create_custom_entity_viz(json_data, text)
|
311 |
graph_html = create_graph(json_data)
|
312 |
|
@@ -324,18 +333,24 @@ def generate_first_example_cache():
|
|
324 |
|
325 |
with open(EXAMPLE_CACHE_FILE, 'wb') as f:
|
326 |
pickle.dump(cached_data, f)
|
327 |
-
print("First example cache generated successfully")
|
|
|
328 |
|
329 |
return cached_data
|
330 |
except Exception as e:
|
331 |
-
print(f"Error generating first example cache: {str(e)}")
|
|
|
332 |
else:
|
333 |
-
print("First example cache already exists")
|
|
|
|
|
|
|
334 |
try:
|
335 |
with open(EXAMPLE_CACHE_FILE, 'rb') as f:
|
336 |
return pickle.load(f)
|
337 |
except Exception as e:
|
338 |
-
print(f"Error loading existing cache: {str(e)}")
|
|
|
339 |
|
340 |
return None
|
341 |
|
@@ -345,7 +360,7 @@ def create_ui():
|
|
345 |
"""
|
346 |
|
347 |
# Try to generate/load the first example cache
|
348 |
-
first_example_cache = generate_first_example_cache()
|
349 |
|
350 |
with gr.Blocks(css=CUSTOM_CSS, title=TITLE) as demo:
|
351 |
# Header
|
|
|
3 |
import spacy
|
4 |
import pickle
|
5 |
import random
|
6 |
+
import logging
|
7 |
import rapidjson
|
8 |
+
import asyncio
|
9 |
+
|
10 |
import gradio as gr
|
11 |
import networkx as nx
|
12 |
|
|
|
15 |
from spacy import displacy
|
16 |
from spacy.tokens import Span
|
17 |
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
|
20 |
# Constants
|
21 |
TITLE = "🌐 Text2Graph: Extract Knowledge Graphs from Natural Language"
|
22 |
SUBTITLE = "✨ Extract and visualize knowledge graphs from texts in any language!"
|
|
|
58 |
return " ".join(text.split())
|
59 |
|
60 |
# @spaces.GPU
|
61 |
+
async def extract_kg(text="", model=None):
|
62 |
"""
|
63 |
Extract knowledge graph from text
|
64 |
"""
|
|
|
67 |
if not text or not model:
|
68 |
raise gr.Error("⚠️ Both text and model must be provided!")
|
69 |
try:
|
70 |
+
model_instance = LLMGraph(model=model)
|
71 |
+
result = await model_instance.extract(text)
|
72 |
+
|
73 |
return rapidjson.loads(result)
|
74 |
except Exception as e:
|
75 |
raise gr.Error(f"❌ Extraction error: {str(e)}")
|
|
|
223 |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
224 |
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
225 |
|
226 |
+
async def process_and_visualize(text, model, progress=gr.Progress()):
|
227 |
"""
|
228 |
Process text and visualize knowledge graph and entities
|
229 |
"""
|
|
|
244 |
progress(1.0, desc="Loaded from cache!")
|
245 |
return cache_data["graph_html"], cache_data["entities_viz"], cache_data["json_data"], cache_data["stats"]
|
246 |
except Exception as e:
|
247 |
+
# print(f"Cache loading error: {str(e)}")
|
248 |
+
logging.error(f"Cache loading error: {str(e)}")
|
249 |
|
250 |
# Continue with normal processing if cache fails
|
251 |
progress(0, desc="Starting extraction...")
|
252 |
+
json_data = await extract_kg(text, model)
|
253 |
|
254 |
progress(0.5, desc="Creating entity visualization...")
|
255 |
entities_viz = create_custom_entity_viz(json_data, text)
|
|
|
273 |
with open(EXAMPLE_CACHE_FILE, 'wb') as f:
|
274 |
pickle.dump(cache_data, f)
|
275 |
except Exception as e:
|
276 |
+
# print(f"Cache saving error: {str(e)}")
|
277 |
+
logging.error(f"Cache saving error: {str(e)}")
|
278 |
|
279 |
progress(1.0, desc="Complete!")
|
280 |
return graph_html, entities_viz, json_data, stats
|
|
|
301 |
les buis et à arroser les rosiers, perpétuant ainsi une tradition d'excellence horticole qui fait la fierté de la capitale française.""")],
|
302 |
]
|
303 |
|
304 |
+
async def generate_first_example_cache():
|
305 |
"""
|
306 |
Generate cache for the first example if it doesn't exist when the app starts
|
307 |
"""
|
308 |
|
309 |
if not os.path.exists(EXAMPLE_CACHE_FILE):
|
310 |
+
# print("Generating cache for first example...")
|
311 |
+
logging.info("Generating cache for first example...")
|
312 |
|
313 |
try:
|
314 |
text = EXAMPLES[0][0]
|
315 |
model = MODEL_LIST[0] if MODEL_LIST else None
|
316 |
|
317 |
# Extract data
|
318 |
+
json_data = await extract_kg(text, model)
|
319 |
entities_viz = create_custom_entity_viz(json_data, text)
|
320 |
graph_html = create_graph(json_data)
|
321 |
|
|
|
333 |
|
334 |
with open(EXAMPLE_CACHE_FILE, 'wb') as f:
|
335 |
pickle.dump(cached_data, f)
|
336 |
+
# print("First example cache generated successfully")
|
337 |
+
logging.info("First example cache generated successfully")
|
338 |
|
339 |
return cached_data
|
340 |
except Exception as e:
|
341 |
+
# print(f"Error generating first example cache: {str(e)}")
|
342 |
+
logging.error(f"Error generating first example cache: {str(e)}")
|
343 |
else:
|
344 |
+
# print("First example cache already exists")
|
345 |
+
logging.info("First example cache already exists")
|
346 |
+
|
347 |
+
# Load existing cache
|
348 |
try:
|
349 |
with open(EXAMPLE_CACHE_FILE, 'rb') as f:
|
350 |
return pickle.load(f)
|
351 |
except Exception as e:
|
352 |
+
# print(f"Error loading existing cache: {str(e)}")
|
353 |
+
logging.error(f"Error loading existing cache: {str(e)}")
|
354 |
|
355 |
return None
|
356 |
|
|
|
360 |
"""
|
361 |
|
362 |
# Try to generate/load the first example cache
|
363 |
+
first_example_cache = asyncio.run(generate_first_example_cache())
|
364 |
|
365 |
with gr.Blocks(css=CUSTOM_CSS, title=TITLE) as demo:
|
366 |
# Header
|
app_old.py
DELETED
@@ -1,280 +0,0 @@
|
|
1 |
-
# import spaces
|
2 |
-
import gradio as gr
|
3 |
-
from llm_graph import MODEL_LIST, LLMGraph
|
4 |
-
import rapidjson
|
5 |
-
from pyvis.network import Network
|
6 |
-
import networkx as nx
|
7 |
-
import spacy
|
8 |
-
from spacy import displacy
|
9 |
-
from spacy.tokens import Span
|
10 |
-
import random
|
11 |
-
from tqdm import tqdm
|
12 |
-
|
13 |
-
# Constants
|
14 |
-
TITLE = "🌐 GraphMind: Phi-3 Instruct Graph Explorer"
|
15 |
-
SUBTITLE = "✨ Extract and visualize knowledge graphs from any text in multiple languages"
|
16 |
-
|
17 |
-
# Custom CSS for styling
|
18 |
-
CUSTOM_CSS = """
|
19 |
-
.gradio-container {
|
20 |
-
font-family: 'Inter', 'Segoe UI', Roboto, sans-serif;
|
21 |
-
}
|
22 |
-
.gr-button-primary {
|
23 |
-
background-color: #6366f1 !important;
|
24 |
-
}
|
25 |
-
.gr-button-secondary {
|
26 |
-
border-color: #6366f1 !important;
|
27 |
-
color: #6366f1 !important;
|
28 |
-
}
|
29 |
-
"""
|
30 |
-
|
31 |
-
# Color utilities
|
32 |
-
def get_random_light_color():
|
33 |
-
r = random.randint(140, 255)
|
34 |
-
g = random.randint(140, 255)
|
35 |
-
b = random.randint(140, 255)
|
36 |
-
return f"#{r:02x}{g:02x}{b:02x}"
|
37 |
-
|
38 |
-
# Text preprocessing
|
39 |
-
def handle_text(text):
|
40 |
-
return " ".join(text.split())
|
41 |
-
|
42 |
-
# Main processing functions
|
43 |
-
# @spaces.GPU
|
44 |
-
def extract(text, model):
|
45 |
-
try:
|
46 |
-
model = LLMGraph(model=model)
|
47 |
-
result = model.extract(text)
|
48 |
-
return rapidjson.loads(result)
|
49 |
-
except Exception as e:
|
50 |
-
raise gr.Error(f"Extraction error: {str(e)}")
|
51 |
-
|
52 |
-
def find_token_indices(doc, substring, text):
|
53 |
-
result = []
|
54 |
-
start_index = text.find(substring)
|
55 |
-
|
56 |
-
while start_index != -1:
|
57 |
-
end_index = start_index + len(substring)
|
58 |
-
start_token = None
|
59 |
-
end_token = None
|
60 |
-
|
61 |
-
for token in doc:
|
62 |
-
if token.idx == start_index:
|
63 |
-
start_token = token.i
|
64 |
-
if token.idx + len(token) == end_index:
|
65 |
-
end_token = token.i + 1
|
66 |
-
|
67 |
-
if start_token is not None and end_token is not None:
|
68 |
-
result.append({
|
69 |
-
"start": start_token,
|
70 |
-
"end": end_token
|
71 |
-
})
|
72 |
-
|
73 |
-
# Search for next occurrence
|
74 |
-
start_index = text.find(substring, end_index)
|
75 |
-
|
76 |
-
return result
|
77 |
-
|
78 |
-
def create_custom_entity_viz(data, full_text):
|
79 |
-
nlp = spacy.blank("xx")
|
80 |
-
doc = nlp(full_text)
|
81 |
-
|
82 |
-
spans = []
|
83 |
-
colors = {}
|
84 |
-
for node in data["nodes"]:
|
85 |
-
entity_spans = find_token_indices(doc, node["id"], full_text)
|
86 |
-
for dataentity in entity_spans:
|
87 |
-
start = dataentity["start"]
|
88 |
-
end = dataentity["end"]
|
89 |
-
|
90 |
-
if start < len(doc) and end <= len(doc):
|
91 |
-
# Check for overlapping spans
|
92 |
-
overlapping = any(s.start < end and start < s.end for s in spans)
|
93 |
-
if not overlapping:
|
94 |
-
span = Span(doc, start, end, label=node["type"])
|
95 |
-
spans.append(span)
|
96 |
-
if node["type"] not in colors:
|
97 |
-
colors[node["type"]] = get_random_light_color()
|
98 |
-
|
99 |
-
doc.set_ents(spans, default="unmodified")
|
100 |
-
doc.spans["sc"] = spans
|
101 |
-
|
102 |
-
options = {
|
103 |
-
"colors": colors,
|
104 |
-
"ents": list(colors.keys()),
|
105 |
-
"style": "ent",
|
106 |
-
"manual": True
|
107 |
-
}
|
108 |
-
|
109 |
-
html = displacy.render(doc, style="span", options=options)
|
110 |
-
return html
|
111 |
-
|
112 |
-
def create_graph(json_data):
|
113 |
-
G = nx.Graph()
|
114 |
-
|
115 |
-
# Add nodes with tooltips
|
116 |
-
for node in json_data['nodes']:
|
117 |
-
G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}")
|
118 |
-
|
119 |
-
# Add edges with labels
|
120 |
-
for edge in json_data['edges']:
|
121 |
-
G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])
|
122 |
-
|
123 |
-
# Create network visualization
|
124 |
-
nt = Network(
|
125 |
-
width="720px",
|
126 |
-
height="600px",
|
127 |
-
directed=True,
|
128 |
-
notebook=False,
|
129 |
-
bgcolor="#f8fafc",
|
130 |
-
font_color="#1e293b"
|
131 |
-
)
|
132 |
-
|
133 |
-
# Configure network display
|
134 |
-
nt.from_nx(G)
|
135 |
-
nt.barnes_hut(
|
136 |
-
gravity=-3000,
|
137 |
-
central_gravity=0.3,
|
138 |
-
spring_length=50,
|
139 |
-
spring_strength=0.001,
|
140 |
-
damping=0.09,
|
141 |
-
overlap=0,
|
142 |
-
)
|
143 |
-
|
144 |
-
# Customize edge appearance
|
145 |
-
for edge in nt.edges:
|
146 |
-
edge['width'] = 2
|
147 |
-
edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
|
148 |
-
edge['color'] = {'color': '#6366f1', 'highlight': '#4f46e5'}
|
149 |
-
edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Arial'}
|
150 |
-
|
151 |
-
# Customize node appearance
|
152 |
-
for node in nt.nodes:
|
153 |
-
node['color'] = {'background': '#e0e7ff', 'border': '#6366f1', 'highlight': {'background': '#c7d2fe', 'border': '#4f46e5'}}
|
154 |
-
node['font'] = {'size': 14, 'color': '#1e293b'}
|
155 |
-
node['shape'] = 'dot'
|
156 |
-
node['size'] = 25
|
157 |
-
|
158 |
-
# Generate HTML with iframe to isolate styles
|
159 |
-
html = nt.generate_html()
|
160 |
-
html = html.replace("'", '"')
|
161 |
-
|
162 |
-
return f"""<iframe style="width: 100%; height: 620px; margin: 0 auto; border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);"
|
163 |
-
name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
|
164 |
-
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups
|
165 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
166 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
167 |
-
|
168 |
-
def process_and_visualize(text, model, progress=gr.Progress()):
|
169 |
-
if not text or not model:
|
170 |
-
raise gr.Error("⚠️ Both text and model must be provided.")
|
171 |
-
|
172 |
-
progress(0, desc="Starting extraction...")
|
173 |
-
json_data = extract(text, model)
|
174 |
-
|
175 |
-
progress(0.5, desc="Creating entity visualization...")
|
176 |
-
entities_viz = create_custom_entity_viz(json_data, text)
|
177 |
-
|
178 |
-
progress(0.8, desc="Building knowledge graph...")
|
179 |
-
graph_html = create_graph(json_data)
|
180 |
-
|
181 |
-
node_count = len(json_data["nodes"])
|
182 |
-
edge_count = len(json_data["edges"])
|
183 |
-
stats = f"📊 Extracted {node_count} entities and {edge_count} relationships"
|
184 |
-
|
185 |
-
progress(1.0, desc="Complete!")
|
186 |
-
return graph_html, entities_viz, json_data, stats
|
187 |
-
|
188 |
-
# Example texts in different languages
|
189 |
-
EXAMPLES = [
|
190 |
-
[handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing
|
191 |
-
lead singer Steven Tyler's unrecoverable vocal cord injury.
|
192 |
-
The decision comes after months of unsuccessful treatment for Tyler's fractured larynx,
|
193 |
-
which he suffered in September 2023.""")],
|
194 |
-
|
195 |
-
[handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
|
196 |
-
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
|
197 |
-
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
|
198 |
-
pleaded not guilty to the charges.""")],
|
199 |
-
|
200 |
-
[handle_text("""세계적인 기술 기업 삼성전자는 새로운 인공지능 기반 스마트폰을 올해 하반기에 출시할 예정이라고 발표했다.
|
201 |
-
이 스마트폰은 현재 개발 중인 갤럭시 시리즈의 최신작으로, 강력한 AI 기능과 혁신적인 카메라 시스템을 탑재할 것으로 알려졌다.
|
202 |
-
삼성전자의 CEO는 이번 신제품이 스마트폰 시장에 새로운 혁신을 가져올 것이라고 전망했다.""")],
|
203 |
-
|
204 |
-
[handle_text("""한국 영화 '기생충'은 2020년 아카데미 시상식에서 작품상, 감독상, 각본상, 국제영화상 등 4개 부문을 수상하며 역사를 새로 썼다.
|
205 |
-
봉준호 감독이 연출한 이 영화는 한국 영화 최초로 칸 영화제 황금종려상도 수상했으며, 전 세계적으로 엄청난 흥행과
|
206 |
-
평단의 호평을 받았다.""")]
|
207 |
-
]
|
208 |
-
|
209 |
-
def create_ui():
|
210 |
-
with gr.Blocks(css=CUSTOM_CSS, title=TITLE) as demo:
|
211 |
-
# Header
|
212 |
-
gr.Markdown(f"# {TITLE}")
|
213 |
-
gr.Markdown(f"{SUBTITLE}")
|
214 |
-
|
215 |
-
with gr.Row():
|
216 |
-
gr.Markdown("🌍 **Multilingual Support Available** 🔤")
|
217 |
-
|
218 |
-
# Main interface
|
219 |
-
with gr.Row():
|
220 |
-
# Input column
|
221 |
-
with gr.Column(scale=1):
|
222 |
-
input_model = gr.Dropdown(
|
223 |
-
MODEL_LIST,
|
224 |
-
label="🤖 Select Model",
|
225 |
-
info="Choose a model to process your text",
|
226 |
-
value=MODEL_LIST[0] if MODEL_LIST else None
|
227 |
-
)
|
228 |
-
|
229 |
-
input_text = gr.TextArea(
|
230 |
-
label="📝 Input Text",
|
231 |
-
info="Enter text in any language to extract a knowledge graph",
|
232 |
-
placeholder="Enter text here...",
|
233 |
-
lines=10
|
234 |
-
)
|
235 |
-
|
236 |
-
with gr.Row():
|
237 |
-
submit_button = gr.Button("🚀 Extract & Visualize", variant="primary", scale=2)
|
238 |
-
clear_button = gr.Button("🔄 Clear", variant="secondary", scale=1)
|
239 |
-
|
240 |
-
gr.Examples(
|
241 |
-
examples=EXAMPLES,
|
242 |
-
inputs=input_text,
|
243 |
-
label="📚 Example Texts (English & Korean)"
|
244 |
-
)
|
245 |
-
|
246 |
-
stats_output = gr.Markdown("", label="🔍 Analysis Results")
|
247 |
-
|
248 |
-
# Output column
|
249 |
-
with gr.Column(scale=1):
|
250 |
-
with gr.Tab("🧩 Knowledge Graph"):
|
251 |
-
output_graph = gr.HTML(label="")
|
252 |
-
|
253 |
-
with gr.Tab("🏷️ Entities"):
|
254 |
-
output_entity_viz = gr.HTML(label="")
|
255 |
-
|
256 |
-
with gr.Tab("📊 JSON Data"):
|
257 |
-
output_json = gr.JSON(label="")
|
258 |
-
|
259 |
-
# Functionality
|
260 |
-
submit_button.click(
|
261 |
-
fn=process_and_visualize,
|
262 |
-
inputs=[input_text, input_model],
|
263 |
-
outputs=[output_graph, output_entity_viz, output_json, stats_output]
|
264 |
-
)
|
265 |
-
|
266 |
-
clear_button.click(
|
267 |
-
fn=lambda: [None, None, None, ""],
|
268 |
-
inputs=[],
|
269 |
-
outputs=[output_graph, output_entity_viz, output_json, stats_output]
|
270 |
-
)
|
271 |
-
|
272 |
-
# Footer
|
273 |
-
gr.Markdown("---")
|
274 |
-
gr.Markdown("📋 **Instructions:** Enter text in any language, select a model, and click 'Extract & Visualize' to generate a knowledge graph.")
|
275 |
-
gr.Markdown("🛠️ Powered by Phi-3 Instruct Graph | Emergent Methods")
|
276 |
-
|
277 |
-
return demo
|
278 |
-
|
279 |
-
demo = create_ui()
|
280 |
-
demo.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llm_graph.py
CHANGED
@@ -1,18 +1,31 @@
|
|
1 |
import os
|
2 |
-
|
|
|
3 |
|
4 |
-
from
|
5 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
load_dotenv()
|
|
|
|
|
8 |
api_token = os.environ["HF_TOKEN"]
|
9 |
endpoint_url = os.environ["HF_API_ENDPOINT"]
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
MODEL_LIST = [
|
18 |
"OpenAI/GPT-4.1-mini",
|
@@ -20,15 +33,71 @@ MODEL_LIST = [
|
|
20 |
]
|
21 |
|
22 |
class LLMGraph:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def __init__(self, model="OpenAI/GPT-4.1-mini"):
|
24 |
"""
|
25 |
Initialize the Phi3InstructGraph with a specified model.
|
26 |
"""
|
27 |
-
|
28 |
if model not in MODEL_LIST:
|
29 |
raise ValueError(f"Model must be one of {MODEL_LIST}")
|
30 |
|
31 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def _generate(self, messages):
|
34 |
"""
|
@@ -36,7 +105,7 @@ class LLMGraph:
|
|
36 |
"""
|
37 |
|
38 |
# Use the chat_completion method
|
39 |
-
response =
|
40 |
messages=messages,
|
41 |
max_tokens=1024,
|
42 |
)
|
@@ -85,7 +154,6 @@ class LLMGraph:
|
|
85 |
-------Text end-------
|
86 |
""")
|
87 |
|
88 |
-
# if self.model_path == "EmergentMethods/Phi-3-medium-128k-instruct-graph":
|
89 |
messages = [
|
90 |
{
|
91 |
"role": "system",
|
@@ -96,17 +164,58 @@ class LLMGraph:
|
|
96 |
"content": user_message
|
97 |
}
|
98 |
]
|
99 |
-
# else:
|
100 |
-
# # TODO: update for other models
|
101 |
|
102 |
return messages
|
103 |
|
104 |
-
def extract(self, text):
|
105 |
"""
|
106 |
Extract knowledge graph from text
|
107 |
"""
|
108 |
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import asyncio
|
3 |
+
import numpy as np
|
4 |
|
5 |
+
from textwrap import dedent
|
6 |
from dotenv import load_dotenv
|
7 |
+
from openai import AzureOpenAI
|
8 |
+
from huggingface_hub import InferenceClient
|
9 |
+
|
10 |
+
from lightrag import LightRAG
|
11 |
+
from lightrag.utils import EmbeddingFunc
|
12 |
+
from lightrag.kg.shared_storage import initialize_pipeline_status
|
13 |
|
14 |
load_dotenv()
|
15 |
+
|
16 |
+
# Load the environment variables
|
17 |
api_token = os.environ["HF_TOKEN"]
|
18 |
endpoint_url = os.environ["HF_API_ENDPOINT"]
|
19 |
|
20 |
+
AZURE_OPENAI_API_VERSION = os.environ["AZURE_OPENAI_API_VERSION"]
|
21 |
+
AZURE_OPENAI_DEPLOYMENT = os.environ["AZURE_OPENAI_DEPLOYMENT"]
|
22 |
+
AZURE_OPENAI_API_KEY = os.environ["AZURE_OPENAI_API_KEY"]
|
23 |
+
AZURE_OPENAI_ENDPOINT = os.environ["AZURE_OPENAI_ENDPOINT"]
|
24 |
+
|
25 |
+
AZURE_EMBEDDING_DEPLOYMENT = os.environ["AZURE_EMBEDDING_DEPLOYMENT"]
|
26 |
+
AZURE_EMBEDDING_API_VERSION = os.environ["AZURE_EMBEDDING_API_VERSION"]
|
27 |
+
|
28 |
+
WORKING_DIR = "./cache"
|
29 |
|
30 |
MODEL_LIST = [
|
31 |
"OpenAI/GPT-4.1-mini",
|
|
|
33 |
]
|
34 |
|
35 |
class LLMGraph:
|
36 |
+
"""
|
37 |
+
A class to interact with LLMs for knowledge graph extraction.
|
38 |
+
"""
|
39 |
+
|
40 |
+
async def _initialize_rag(self, embedding_dimension=3072):
|
41 |
+
"""
|
42 |
+
Initialize the LightRAG instance with the specified embedding dimension.
|
43 |
+
"""
|
44 |
+
|
45 |
+
rag = LightRAG(
|
46 |
+
working_dir=WORKING_DIR,
|
47 |
+
llm_model_func=self._llm_model_func,
|
48 |
+
embedding_func=EmbeddingFunc(
|
49 |
+
embedding_dim=embedding_dimension,
|
50 |
+
max_token_size=8192,
|
51 |
+
func=self._embedding_func,
|
52 |
+
),
|
53 |
+
)
|
54 |
+
|
55 |
+
await rag.initialize_storages()
|
56 |
+
await initialize_pipeline_status()
|
57 |
+
|
58 |
+
return rag
|
59 |
+
|
60 |
+
async def _get_rag(self):
|
61 |
+
"""
|
62 |
+
Get or initialize the RAG instance (lazy loading).
|
63 |
+
"""
|
64 |
+
|
65 |
+
if self.rag is None:
|
66 |
+
self.rag = await self._initialize_rag()
|
67 |
+
|
68 |
+
return self.rag
|
69 |
+
|
70 |
def __init__(self, model="OpenAI/GPT-4.1-mini"):
|
71 |
"""
|
72 |
Initialize the Phi3InstructGraph with a specified model.
|
73 |
"""
|
74 |
+
|
75 |
if model not in MODEL_LIST:
|
76 |
raise ValueError(f"Model must be one of {MODEL_LIST}")
|
77 |
|
78 |
+
self.model_name = model
|
79 |
+
|
80 |
+
if model == MODEL_LIST[0]:
|
81 |
+
# Use Azure OpenAI for GPT-4.1-mini
|
82 |
+
self.llm_client = AzureOpenAI(
|
83 |
+
api_key=AZURE_OPENAI_API_KEY,
|
84 |
+
api_version=AZURE_OPENAI_API_VERSION,
|
85 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
86 |
+
)
|
87 |
+
|
88 |
+
self.emb_client = AzureOpenAI(
|
89 |
+
api_key=AZURE_OPENAI_API_KEY,
|
90 |
+
api_version=AZURE_EMBEDDING_API_VERSION,
|
91 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
92 |
+
)
|
93 |
+
|
94 |
+
self.rag = None # Initialize as None for lazy loading
|
95 |
+
else:
|
96 |
+
# Use Hugging Face Inference API for Phi-3-mini-128k-instruct-graph
|
97 |
+
self.hf_client = InferenceClient(
|
98 |
+
model=endpoint_url,
|
99 |
+
token=api_token
|
100 |
+
)
|
101 |
|
102 |
def _generate(self, messages):
|
103 |
"""
|
|
|
105 |
"""
|
106 |
|
107 |
# Use the chat_completion method
|
108 |
+
response = self.hf_client.chat_completion(
|
109 |
messages=messages,
|
110 |
max_tokens=1024,
|
111 |
)
|
|
|
154 |
-------Text end-------
|
155 |
""")
|
156 |
|
|
|
157 |
messages = [
|
158 |
{
|
159 |
"role": "system",
|
|
|
164 |
"content": user_message
|
165 |
}
|
166 |
]
|
|
|
|
|
167 |
|
168 |
return messages
|
169 |
|
170 |
+
async def extract(self, text):
|
171 |
"""
|
172 |
Extract knowledge graph from text
|
173 |
"""
|
174 |
|
175 |
+
generated_text = ""
|
176 |
+
|
177 |
+
if self.model_name == MODEL_LIST[0]:
|
178 |
+
# Use LightRAG with Azure OpenAI
|
179 |
+
rag = await self._get_rag()
|
180 |
+
rag.insert(text)
|
181 |
+
else:
|
182 |
+
# Use Hugging Face Inference API with Phi-3-mini-128k-instruct-graph
|
183 |
+
messages = self._get_messages(text)
|
184 |
+
generated_text = self._generate(messages)
|
185 |
|
186 |
return generated_text
|
187 |
+
|
188 |
+
async def _llm_model_func(self, prompt, system_prompt=None, history_messages=[], **kwargs) -> str:
|
189 |
+
"""
|
190 |
+
Call the Azure OpenAI chat completion endpoint with the given prompt and optional system prompt and history messages.
|
191 |
+
"""
|
192 |
+
|
193 |
+
messages = []
|
194 |
+
|
195 |
+
if system_prompt:
|
196 |
+
messages.append({"role": "system", "content": system_prompt})
|
197 |
+
|
198 |
+
if history_messages:
|
199 |
+
messages.extend(history_messages)
|
200 |
+
|
201 |
+
messages.append({"role": "user", "content": prompt})
|
202 |
+
|
203 |
+
chat_completion = self.llm_client.chat.completions.create(
|
204 |
+
model=AZURE_OPENAI_DEPLOYMENT,
|
205 |
+
messages=messages,
|
206 |
+
temperature=kwargs.get("temperature", 0),
|
207 |
+
top_p=kwargs.get("top_p", 1),
|
208 |
+
n=kwargs.get("n", 1),
|
209 |
+
)
|
210 |
+
|
211 |
+
return chat_completion.choices[0].message.content
|
212 |
+
|
213 |
+
async def _embedding_func(self, texts: list[str]) -> np.ndarray:
|
214 |
+
"""
|
215 |
+
Call the Azure OpenAI embeddings endpoint with the given texts.
|
216 |
+
"""
|
217 |
+
|
218 |
+
embedding = self.emb_client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
|
219 |
+
embeddings = [item.embedding for item in embedding.data]
|
220 |
+
|
221 |
+
return np.array(embeddings)
|
main.py
DELETED
@@ -1,392 +0,0 @@
|
|
1 |
-
# import spaces
|
2 |
-
import gradio as gr
|
3 |
-
from llm_graph import MODEL_LIST, LLMGraph
|
4 |
-
import rapidjson
|
5 |
-
from pyvis.network import Network
|
6 |
-
import networkx as nx
|
7 |
-
import spacy
|
8 |
-
from spacy import displacy
|
9 |
-
from spacy.tokens import Span
|
10 |
-
import random
|
11 |
-
import time
|
12 |
-
|
13 |
-
# Set up the theme and styling
|
14 |
-
CUSTOM_CSS = """
|
15 |
-
.gradio-container {
|
16 |
-
font-family: 'Inter', 'Segoe UI', Roboto, sans-serif;
|
17 |
-
}
|
18 |
-
.gr-prose h1 {
|
19 |
-
font-size: 2.5rem !important;
|
20 |
-
margin-bottom: 0.5rem !important;
|
21 |
-
background: linear-gradient(90deg, #4338ca, #a855f7);
|
22 |
-
-webkit-background-clip: text;
|
23 |
-
-webkit-text-fill-color: transparent;
|
24 |
-
}
|
25 |
-
.gr-prose h2 {
|
26 |
-
font-size: 1.8rem !important;
|
27 |
-
margin-top: 1rem !important;
|
28 |
-
}
|
29 |
-
.info-box {
|
30 |
-
padding: 1rem;
|
31 |
-
border-radius: 0.5rem;
|
32 |
-
background-color: #f3f4f6;
|
33 |
-
margin-bottom: 1rem;
|
34 |
-
border-left: 4px solid #6366f1;
|
35 |
-
}
|
36 |
-
.language-badge {
|
37 |
-
display: inline-block;
|
38 |
-
padding: 0.25rem 0.5rem;
|
39 |
-
border-radius: 9999px;
|
40 |
-
font-size: 0.75rem;
|
41 |
-
font-weight: 600;
|
42 |
-
background-color: #e0e7ff;
|
43 |
-
color: #4338ca;
|
44 |
-
margin-right: 0.5rem;
|
45 |
-
margin-bottom: 0.5rem;
|
46 |
-
}
|
47 |
-
.footer {
|
48 |
-
text-align: center;
|
49 |
-
margin-top: 2rem;
|
50 |
-
padding-top: 1rem;
|
51 |
-
border-top: 1px solid #e2e8f0;
|
52 |
-
font-size: 0.875rem;
|
53 |
-
color: #64748b;
|
54 |
-
}
|
55 |
-
"""
|
56 |
-
|
57 |
-
# Color utilities
|
58 |
-
def get_random_light_color():
|
59 |
-
r = random.randint(150, 255)
|
60 |
-
g = random.randint(150, 255)
|
61 |
-
b = random.randint(150, 255)
|
62 |
-
return f"#{r:02x}{g:02x}{b:02x}"
|
63 |
-
|
64 |
-
# Text processing helper
|
65 |
-
def handle_text(text):
|
66 |
-
return " ".join(text.split())
|
67 |
-
|
68 |
-
# Core extraction function
|
69 |
-
# @spaces.GPU
|
70 |
-
def extract(text, model):
|
71 |
-
model = LLMGraph(model=model)
|
72 |
-
try:
|
73 |
-
result = model.extract(text)
|
74 |
-
return rapidjson.loads(result)
|
75 |
-
except Exception as e:
|
76 |
-
raise gr.Error(f"🚨 Extraction failed: {str(e)}")
|
77 |
-
|
78 |
-
def find_token_indices(doc, substring, text):
|
79 |
-
result = []
|
80 |
-
start_index = text.find(substring)
|
81 |
-
|
82 |
-
while start_index != -1:
|
83 |
-
end_index = start_index + len(substring)
|
84 |
-
start_token = None
|
85 |
-
end_token = None
|
86 |
-
|
87 |
-
for token in doc:
|
88 |
-
if token.idx == start_index:
|
89 |
-
start_token = token.i
|
90 |
-
if token.idx + len(token) == end_index:
|
91 |
-
end_token = token.i + 1
|
92 |
-
|
93 |
-
if start_token is not None and end_token is not None:
|
94 |
-
result.append({
|
95 |
-
"start": start_token,
|
96 |
-
"end": end_token
|
97 |
-
})
|
98 |
-
|
99 |
-
# Search for next occurrence
|
100 |
-
start_index = text.find(substring, end_index)
|
101 |
-
|
102 |
-
return result
|
103 |
-
|
104 |
-
def create_custom_entity_viz(data, full_text):
|
105 |
-
nlp = spacy.blank("xx")
|
106 |
-
doc = nlp(full_text)
|
107 |
-
|
108 |
-
spans = []
|
109 |
-
colors = {}
|
110 |
-
|
111 |
-
for node in data["nodes"]:
|
112 |
-
entity_spans = find_token_indices(doc, node["id"], full_text)
|
113 |
-
for dataentity in entity_spans:
|
114 |
-
start = dataentity["start"]
|
115 |
-
end = dataentity["end"]
|
116 |
-
|
117 |
-
if start < len(doc) and end <= len(doc):
|
118 |
-
# Check for overlapping spans
|
119 |
-
overlapping = any(s.start < end and start < s.end for s in spans)
|
120 |
-
if not overlapping:
|
121 |
-
span = Span(doc, start, end, label=node["type"])
|
122 |
-
spans.append(span)
|
123 |
-
if node["type"] not in colors:
|
124 |
-
colors[node["type"]] = get_random_light_color()
|
125 |
-
|
126 |
-
doc.set_ents(spans, default="unmodified")
|
127 |
-
doc.spans["sc"] = spans
|
128 |
-
|
129 |
-
options = {
|
130 |
-
"colors": colors,
|
131 |
-
"ents": list(colors.keys()),
|
132 |
-
"style": "ent",
|
133 |
-
"manual": True
|
134 |
-
}
|
135 |
-
|
136 |
-
html = displacy.render(doc, style="span", options=options)
|
137 |
-
|
138 |
-
# Add custom styling to the entity visualization
|
139 |
-
styled_html = f"""
|
140 |
-
<div style="border-radius: 0.5rem; padding: 1rem; background-color: white;
|
141 |
-
border: 1px solid #e2e8f0; box-shadow: 0 1px 3px 0 rgba(0, 0, 0, 0.1);">
|
142 |
-
<div style="margin-bottom: 0.75rem; font-weight: 500; color: #4b5563;">
|
143 |
-
Entity types found:
|
144 |
-
{' '.join([f'<span style="display: inline-block; margin-right: 0.5rem; margin-bottom: 0.5rem; padding: 0.25rem 0.5rem; border-radius: 9999px; font-size: 0.75rem; background-color: {colors[entity_type]}; color: #1e293b;">{entity_type}</span>' for entity_type in colors.keys()])}
|
145 |
-
</div>
|
146 |
-
{html}
|
147 |
-
</div>
|
148 |
-
"""
|
149 |
-
|
150 |
-
return styled_html
|
151 |
-
|
152 |
-
def create_graph(json_data):
|
153 |
-
G = nx.DiGraph() # Using DiGraph for directed graph
|
154 |
-
|
155 |
-
# Add nodes
|
156 |
-
for node in json_data['nodes']:
|
157 |
-
G.add_node(node['id'],
|
158 |
-
title=f"{node['type']}: {node['detailed_type']}",
|
159 |
-
group=node['type']) # Group nodes by type
|
160 |
-
|
161 |
-
# Add edges
|
162 |
-
for edge in json_data['edges']:
|
163 |
-
G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])
|
164 |
-
|
165 |
-
# Create network visualization
|
166 |
-
nt = Network(
|
167 |
-
width="100%",
|
168 |
-
height="600px",
|
169 |
-
directed=True,
|
170 |
-
notebook=False,
|
171 |
-
bgcolor="#fafafa",
|
172 |
-
font_color="#1e293b"
|
173 |
-
)
|
174 |
-
|
175 |
-
# Configure network
|
176 |
-
nt.from_nx(G)
|
177 |
-
nt.barnes_hut(
|
178 |
-
gravity=-3000,
|
179 |
-
central_gravity=0.3,
|
180 |
-
spring_length=150,
|
181 |
-
spring_strength=0.001,
|
182 |
-
damping=0.09,
|
183 |
-
overlap=0,
|
184 |
-
)
|
185 |
-
|
186 |
-
# Create color groups for node types
|
187 |
-
node_types = {node['type'] for node in json_data['nodes']}
|
188 |
-
colors = {}
|
189 |
-
for i, node_type in enumerate(node_types):
|
190 |
-
hue = (i * 137) % 360 # Golden ratio to distribute colors
|
191 |
-
colors[node_type] = f"hsl({hue}, 70%, 70%)"
|
192 |
-
|
193 |
-
# Customize nodes
|
194 |
-
for node in nt.nodes:
|
195 |
-
node_data = next((n for n in json_data['nodes'] if n['id'] == node['id']), None)
|
196 |
-
if node_data:
|
197 |
-
node_type = node_data['type']
|
198 |
-
node['color'] = colors.get(node_type, "#bfdbfe")
|
199 |
-
node['shape'] = 'dot'
|
200 |
-
node['size'] = 20
|
201 |
-
node['borderWidth'] = 2
|
202 |
-
node['borderWidthSelected'] = 4
|
203 |
-
node['font'] = {'size': 14, 'color': '#1e293b', 'face': 'Inter, Arial'}
|
204 |
-
|
205 |
-
# Customize edges
|
206 |
-
for edge in nt.edges:
|
207 |
-
edge['color'] = {'color': '#94a3b8', 'highlight': '#6366f1', 'hover': '#818cf8'}
|
208 |
-
edge['width'] = 1.5
|
209 |
-
edge['selectionWidth'] = 2
|
210 |
-
edge['hoverWidth'] = 2
|
211 |
-
edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
|
212 |
-
edge['smooth'] = {'type': 'continuous', 'roundness': 0.2}
|
213 |
-
edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Inter, Arial', 'strokeWidth': 2, 'strokeColor': '#ffffff'}
|
214 |
-
|
215 |
-
# Generate HTML
|
216 |
-
html = nt.generate_html()
|
217 |
-
html = html.replace("'", '"')
|
218 |
-
html = html.replace('height: 600px;', 'height: 600px; border-radius: 8px;')
|
219 |
-
|
220 |
-
return f"""<iframe style="width: 100%; height: 620px; margin: 0 auto; border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);"
|
221 |
-
name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
|
222 |
-
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups
|
223 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
224 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
225 |
-
|
226 |
-
def process_and_visualize(text, model, progress=gr.Progress()):
|
227 |
-
if not text or not model:
|
228 |
-
raise gr.Error("⚠️ Please provide both text and model")
|
229 |
-
|
230 |
-
# Progress updates
|
231 |
-
progress(0.1, "Initializing...")
|
232 |
-
time.sleep(0.2) # Small delay for UI feedback
|
233 |
-
|
234 |
-
# Extract graph
|
235 |
-
progress(0.2, "Extracting knowledge graph...")
|
236 |
-
json_data = extract(text, model)
|
237 |
-
|
238 |
-
# Entity visualization
|
239 |
-
progress(0.6, "Identifying entities...")
|
240 |
-
entities_viz = create_custom_entity_viz(json_data, text)
|
241 |
-
|
242 |
-
# Graph visualization
|
243 |
-
progress(0.8, "Building graph visualization...")
|
244 |
-
graph_html = create_graph(json_data)
|
245 |
-
|
246 |
-
# Statistics
|
247 |
-
entity_types = {}
|
248 |
-
for node in json_data['nodes']:
|
249 |
-
entity_type = node['type']
|
250 |
-
if entity_type in entity_types:
|
251 |
-
entity_types[entity_type] += 1
|
252 |
-
else:
|
253 |
-
entity_types[entity_type] = 1
|
254 |
-
|
255 |
-
stats_html = f"""
|
256 |
-
<div class="info-box">
|
257 |
-
<h3 style="margin-top: 0;">📊 Extraction Results</h3>
|
258 |
-
<p>✅ Successfully extracted <b>{len(json_data['nodes'])}</b> entities and <b>{len(json_data['edges'])}</b> relationships.</p>
|
259 |
-
|
260 |
-
<div>
|
261 |
-
<h4>Entity Types:</h4>
|
262 |
-
<div>
|
263 |
-
{''.join([f'<span class="language-badge">{entity_type}: {count}</span>' for entity_type, count in entity_types.items()])}
|
264 |
-
</div>
|
265 |
-
</div>
|
266 |
-
</div>
|
267 |
-
"""
|
268 |
-
|
269 |
-
progress(1.0, "Done!")
|
270 |
-
return graph_html, entities_viz, json_data, stats_html
|
271 |
-
|
272 |
-
def language_info():
|
273 |
-
return """
|
274 |
-
<div class="info-box">
|
275 |
-
<h3 style="margin-top: 0;">🌍 Multilingual Support</h3>
|
276 |
-
<p>This application supports text analysis in multiple languages, including:</p>
|
277 |
-
<div>
|
278 |
-
<span class="language-badge">English 🇬🇧</span>
|
279 |
-
<span class="language-badge">Korean 🇰🇷</span>
|
280 |
-
<span class="language-badge">Spanish 🇪🇸</span>
|
281 |
-
<span class="language-badge">French 🇫🇷</span>
|
282 |
-
<span class="language-badge">German 🇩🇪</span>
|
283 |
-
<span class="language-badge">Japanese 🇯🇵</span>
|
284 |
-
<span class="language-badge">Chinese 🇨🇳</span>
|
285 |
-
<span class="language-badge">And more...</span>
|
286 |
-
</div>
|
287 |
-
</div>
|
288 |
-
"""
|
289 |
-
|
290 |
-
def tips_html():
|
291 |
-
return """
|
292 |
-
<div class="info-box">
|
293 |
-
<h3 style="margin-top: 0;">💡 Tips for Best Results</h3>
|
294 |
-
<ul>
|
295 |
-
<li>Use clear, descriptive sentences with well-defined relationships</li>
|
296 |
-
<li>Include specific entities, events, dates, and locations for better extraction</li>
|
297 |
-
<li>Longer texts provide more context for relationship identification</li>
|
298 |
-
<li>Try different models to compare extraction results</li>
|
299 |
-
</ul>
|
300 |
-
</div>
|
301 |
-
"""
|
302 |
-
|
303 |
-
# Examples in multiple languages
|
304 |
-
EXAMPLES = [
|
305 |
-
[handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing
|
306 |
-
lead singer Steven Tyler's unrecoverable vocal cord injury.
|
307 |
-
The decision comes after months of unsuccessful treatment for Tyler's fractured larynx,
|
308 |
-
which he suffered in September 2023.""")],
|
309 |
-
|
310 |
-
[handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
|
311 |
-
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
|
312 |
-
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
|
313 |
-
pleaded not guilty to the charges.""")],
|
314 |
-
]
|
315 |
-
|
316 |
-
# Main UI
|
317 |
-
with gr.Blocks(css=CUSTOM_CSS, title="🧠 Phi-3 Knowledge Graph Explorer") as demo:
|
318 |
-
# Header
|
319 |
-
gr.Markdown("# 🧠 Phi-3 Knowledge Graph Explorer")
|
320 |
-
gr.Markdown("### ✨ Extract and visualize knowledge graphs from text in any language")
|
321 |
-
|
322 |
-
with gr.Row():
|
323 |
-
with gr.Column(scale=2):
|
324 |
-
input_text = gr.TextArea(
|
325 |
-
label="📝 Enter your text",
|
326 |
-
placeholder="Paste or type your text here...",
|
327 |
-
lines=10
|
328 |
-
)
|
329 |
-
|
330 |
-
with gr.Row():
|
331 |
-
input_model = gr.Dropdown(
|
332 |
-
MODEL_LIST,
|
333 |
-
label="🤖 Model",
|
334 |
-
value=MODEL_LIST[0] if MODEL_LIST else None,
|
335 |
-
info="Select the model to use for extraction"
|
336 |
-
)
|
337 |
-
|
338 |
-
with gr.Column():
|
339 |
-
submit_button = gr.Button("🔍 Extract & Visualize", variant="primary")
|
340 |
-
clear_button = gr.Button("🔄 Clear", variant="secondary")
|
341 |
-
|
342 |
-
# Multilingual support info
|
343 |
-
gr.HTML(language_info())
|
344 |
-
|
345 |
-
# Examples section
|
346 |
-
gr.Examples(
|
347 |
-
examples=EXAMPLES,
|
348 |
-
inputs=input_text,
|
349 |
-
label="📚 Example Texts (English & Korean)"
|
350 |
-
)
|
351 |
-
|
352 |
-
# Tips
|
353 |
-
gr.HTML(tips_html())
|
354 |
-
|
355 |
-
with gr.Column(scale=3):
|
356 |
-
# Stats output
|
357 |
-
stats_output = gr.HTML(label="")
|
358 |
-
|
359 |
-
# Tabs for different visualizations
|
360 |
-
with gr.Tabs():
|
361 |
-
with gr.TabItem("🔄 Knowledge Graph"):
|
362 |
-
output_graph = gr.HTML()
|
363 |
-
|
364 |
-
with gr.TabItem("🏷️ Entity Recognition"):
|
365 |
-
output_entity_viz = gr.HTML()
|
366 |
-
|
367 |
-
with gr.TabItem("📊 JSON Data"):
|
368 |
-
output_json = gr.JSON()
|
369 |
-
|
370 |
-
# Footer
|
371 |
-
gr.HTML("""
|
372 |
-
<div class="footer">
|
373 |
-
<p>🌐 Powered by Phi-3 Instruct Graph | Created by Emergent Methods</p>
|
374 |
-
<p>© 2025 | Knowledge Graph Explorer</p>
|
375 |
-
</div>
|
376 |
-
""")
|
377 |
-
|
378 |
-
# Set up event handlers
|
379 |
-
submit_button.click(
|
380 |
-
fn=process_and_visualize,
|
381 |
-
inputs=[input_text, input_model],
|
382 |
-
outputs=[output_graph, output_entity_viz, output_json, stats_output]
|
383 |
-
)
|
384 |
-
|
385 |
-
clear_button.click(
|
386 |
-
fn=lambda: [None, None, None, ""],
|
387 |
-
inputs=[],
|
388 |
-
outputs=[output_graph, output_entity_viz, output_json, stats_output]
|
389 |
-
)
|
390 |
-
|
391 |
-
# Launch the app
|
392 |
-
demo.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
python-dotenv
|
2 |
gradio
|
3 |
-
transformers
|
4 |
-
python-dotenv
|
5 |
accelerate
|
6 |
python-rapidjson
|
7 |
spaces
|
8 |
pyvis
|
9 |
networkx
|
10 |
spacy
|
|
|
|
|
|
|
|
1 |
python-dotenv
|
2 |
gradio
|
3 |
+
transformers
|
|
|
4 |
accelerate
|
5 |
python-rapidjson
|
6 |
spaces
|
7 |
pyvis
|
8 |
networkx
|
9 |
spacy
|
10 |
+
numpy
|
11 |
+
lightrag-hku
|
12 |
+
openai
|