phi-knowledge-graph / llm_graph.py
vietexob's picture
Ready to deploy
7e486f9
raw
history blame
8.77 kB
import os
import time
# import shutil
import numpy as np
import networkx as nx
from textwrap import dedent
from dotenv import load_dotenv
from openai import AzureOpenAI
from huggingface_hub import InferenceClient
from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status
load_dotenv()
# Load the environment variables
HF_API_TOKEN = os.environ["HF_TOKEN"]
HF_API_ENDPOINT = os.environ["HF_API_ENDPOINT"]
AZURE_OPENAI_API_VERSION = os.environ["AZURE_OPENAI_API_VERSION"]
AZURE_OPENAI_DEPLOYMENT = os.environ["AZURE_OPENAI_DEPLOYMENT"]
AZURE_OPENAI_API_KEY = os.environ["AZURE_OPENAI_API_KEY"]
AZURE_OPENAI_ENDPOINT = os.environ["AZURE_OPENAI_ENDPOINT"]
AZURE_EMBEDDING_DEPLOYMENT = os.environ["AZURE_EMBEDDING_DEPLOYMENT"]
AZURE_EMBEDDING_API_VERSION = os.environ["AZURE_EMBEDDING_API_VERSION"]
WORKING_DIR = "./sample"
GRAPHML_FILE = WORKING_DIR + "/graph_chunk_entity_relation.graphml"
MODEL_LIST = [
"EmergentMethods/Phi-3-mini-128k-instruct-graph",
"OpenAI/GPT-4.1-mini",
]
class LLMGraph:
"""
A class to interact with LLMs for knowledge graph extraction.
"""
async def initialize_rag(self, embedding_dimension=3072):
"""
Initialize the LightRAG instance with the specified embedding dimension.
"""
if self.rag is None:
self.rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=self._llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=self._embedding_func,
),
)
await self.rag.initialize_storages()
await initialize_pipeline_status()
# async def test_responses(self):
# """
# Test the LLM and embedding functions.
# """
# result = await self._llm_model_func("How are you?")
# print("Response from llm_model_func: ", result)
# result = await self._embedding_func(["How are you?"])
# print("Result of embedding_func: ", result.shape)
# print("Dimension of embedding: ", result.shape[1])
# return True
def __init__(self):
"""
Initialize the Phi3InstructGraph with a specified model.
"""
# Hugging Face Inference API for Phi-3-mini-128k-instruct-graph
self.hf_client = InferenceClient(
model=HF_API_ENDPOINT,
token=HF_API_TOKEN
)
self.rag = None # Lazy loading of RAG instance
def _generate(self, messages):
"""
Generate a response from the model based on the provided messages.
"""
# Use the chat_completion method
response = self.hf_client.chat_completion(
messages=messages,
max_tokens=1024,
)
# Access the generated text
generated_text = response.choices[0].message.content
return generated_text
def _get_messages(self, text):
"""
Construct the message list for the chat model.
"""
context = dedent("""\n
A chat between a curious user and an artificial intelligence Assistant. The Assistant is an expert at identifying entities and relationships in text. The Assistant responds in JSON output only.
The User provides text in the format:
-------Text begin-------
<User provided text>
-------Text end-------
The Assistant follows the following steps before replying to the User:
1. **identify the most important entities** The Assistant identifies the most important entities in the text. These entities are listed in the JSON output under the key "nodes", they follow the structure of a list of dictionaries where each dict is:
"nodes":[{"id": <entity N>, "type": <type>, "detailed_type": <detailed type>}, ...]
where "type": <type> is a broad categorization of the entity. "detailed type": <detailed_type> is a very descriptive categorization of the entity.
2. **determine relationships** The Assistant uses the text between -------Text begin------- and -------Text end------- to determine the relationships between the entities identified in the "nodes" list defined above. These relationships are called "edges" and they follow the structure of:
"edges":[{"from": <entity 1>, "to": <entity 2>, "label": <relationship>}, ...]
The <entity N> must correspond to the "id" of an entity in the "nodes" list.
The Assistant never repeats the same node twice. The Assistant never repeats the same edge twice.
The Assistant responds to the User in JSON only, according to the following JSON schema:
{"type":"object","properties":{"nodes":{"type":"array","items":{"type":"object","properties":{"id":{"type":"string"},"type":{"type":"string"},"detailed_type":{"type":"string"}},"required":["id","type","detailed_type"],"additionalProperties":false}},"edges":{"type":"array","items":{"type":"object","properties":{"from":{"type":"string"},"to":{"type":"string"},"label":{"type":"string"}},"required":["from","to","label"],"additionalProperties":false}}},"required":["nodes","edges"],"additionalProperties":false}
""")
user_message = dedent(f"""\n
-------Text begin-------
{text}
-------Text end-------
""")
messages = [
{
"role": "system",
"content": context
},
{
"role": "user",
"content": user_message
}
]
return messages
def extract(self, text, model_name=MODEL_LIST[0]):
"""
Extract knowledge graph in structured format from text.
"""
if model_name == MODEL_LIST[0]:
# Use Hugging Face Inference API with Phi-3-mini-128k-instruct-graph
messages = self._get_messages(text)
json_graph = self._generate(messages)
return json_graph
else:
# Use LightRAG with Azure OpenAI
self.rag.insert(text) # Insert the text into the RAG storage
# Wait for GRAPHML_FILE to be created
while not os.path.exists(GRAPHML_FILE):
time.sleep(0.1) # Sleep for 100ms before checking again
# Extract dict format of the knowledge graph
G = nx.read_graphml(GRAPHML_FILE)
# Convert the graph to node-link data format
dict_graph = nx.node_link_data(G, edges="edges")
return dict_graph
async def _llm_model_func(self, prompt, system_prompt=None, history_messages=[], **kwargs) -> str:
"""
Call the Azure OpenAI chat completion endpoint with the given prompt and optional system prompt and history messages.
"""
llm_client = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
api_version=AZURE_OPENAI_API_VERSION,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
if history_messages:
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
chat_completion = llm_client.chat.completions.create(
model=AZURE_OPENAI_DEPLOYMENT,
messages=messages,
temperature=kwargs.get("temperature", 0),
top_p=kwargs.get("top_p", 1),
n=kwargs.get("n", 1),
)
return chat_completion.choices[0].message.content
async def _embedding_func(self, texts: list[str]) -> np.ndarray:
"""
Call the Azure OpenAI embeddings endpoint with the given texts.
"""
emb_client = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
api_version=AZURE_EMBEDDING_API_VERSION,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
embedding = emb_client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
embeddings = [item.embedding for item in embedding.data]
return np.array(embeddings)
# if __name__ == "__main__":
# # Initialize the LLMGraph model
# model = LLMGraph()
# asyncio.run(model.initialize_rag()) # Ensure RAG is initialized
# print("LLMGraph model initialized.")