Spaces:
Running
Running
import gradio as gr | |
from datasets import load_dataset, Dataset | |
from collections import defaultdict | |
import random | |
import requests | |
# Load the source dataset | |
source_dataset = load_dataset("vietdata/eng_echo", split="train") | |
source_texts = source_dataset["query"] | |
# Initialize variables | |
translations = defaultdict(list) | |
processed_data = [] | |
def authenticate(user_id): | |
url = "https://intern-api.imtaedu.com/api/subnets/2/authenticate" | |
headers = { | |
"Content-Type": "application/json", | |
"Accept": "application/json", | |
"X-Public-Api-Key": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c" | |
} | |
payload = { "token": "NPldirErwCHb6ZB5NZ9WW0UDmlr3jxxJ" } | |
response = requests.post(url, json=payload, headers=headers) | |
return response.status_code == 200 | |
# Helper function to get the next text for translation | |
def get_next_text(user_id): | |
# Filter texts that already have 10 translations | |
eligible_texts = [text for text in source_texts if len(translations[text]) < 10] | |
if not eligible_texts: | |
return "All texts are fully translated." | |
# Select a random eligible text for translation | |
next_text = random.choice(eligible_texts) | |
return next_text | |
# Function to handle translation submission | |
def submit_translation(user_id, original_text, translation): | |
# Check if text already has 10 translations | |
if len(translations[original_text]) < 10: | |
translations[original_text].append((user_id, translation)) | |
# Check if 100 texts have enough translations to save | |
if len([t for t in translations if len(translations[t]) == 10]) >= 100: | |
save_to_translated_echo() | |
return "Translation submitted successfully." | |
else: | |
return "This text already has 10 translations. Please request a new text." | |
# Function to save completed translations to 'translated_echo' | |
def save_to_translated_echo(): | |
global translations, processed_data | |
# Gather translations with exactly 10 versions | |
completed_translations = [ | |
{"query": text, "translations": [t[1] for t in translations[text]]} | |
for text in translations if len(translations[text]) == 10 | |
] | |
# Append to processed data | |
processed_data.extend(completed_translations) | |
# Reset translations | |
translations = {text: val for text, val in translations.items() if len(val) < 10} | |
# Convert to Hugging Face dataset format | |
translated_dataset = Dataset.from_pandas(pd.DataFrame(processed_data)) | |
# Append to Hugging Face dataset (dummy function call) | |
translated_dataset.push_to_hub("vietdata/translated_echo", split="train") | |
import gradio as gr | |
# Simulated user data for demonstration | |
user_data = {"hello": "hello"} | |
# Sample English text to translate | |
english_text = "Translate this text to Vietnamese." | |
# User session dictionary to store logged-in status | |
user_sessions = {} | |
def login(username, state): | |
state[0] = username | |
# Authenticate user | |
if authenticate(username): | |
#user_sessions[username] = True | |
return f"Welcome, {username}!", gr.update(visible=False), gr.update(visible=True), get_next_text(username) | |
else: | |
return "Invalid username or password.", gr.update(visible=True), gr.update(visible=False), "" | |
def logout(username): | |
# Log out user and reset session | |
if username in user_sessions: | |
del user_sessions[username] | |
return "Logged out. Please log in again.", gr.update(visible=True), gr.update(visible=False) | |
def submit_translation(translation, state, job_input): | |
try: | |
submit_translation(state[0], job_input, translation) | |
origin = job_input | |
# Save the translation and provide feedback | |
return f"""Translation of "{origin}" submitted: {translation}""", get_next_text(state[0]) | |
except Exception as e: | |
print(e) | |
return "Error please try submit again!", job_input | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
state = gr.State([None]) | |
# Login section | |
with gr.Column(visible=True) as login_section: | |
username_input = gr.Textbox(placeholder="Enter your token", label="Token ID") | |
login_button = gr.Button("Login") | |
login_output = gr.Textbox(label="Login Status", interactive=False) | |
# Translation section (initially hidden) | |
with gr.Column(visible=False) as translation_section: | |
job_input = gr.Textbox(value=english_text, label="English Text", interactive=False) | |
translation_input = gr.Textbox(placeholder="Enter your translation here", label="Your Translation") | |
submit_button = gr.Button("Submit Translation") | |
translation_output = gr.Textbox(label="Submission Status", interactive=False) | |
logout_button = gr.Button("Logout") | |
# Button functions | |
login_button.click( | |
login, inputs=[username_input, state], outputs=[login_output, login_section, translation_section, job_input] | |
) | |
submit_button.click( | |
submit_translation, inputs=[translation_input, state, job_input], outputs=[translation_output, job_input] | |
) | |
logout_button.click( | |
logout, inputs=[username_input], outputs=[login_output, login_section, translation_section] | |
) | |
demo.launch(debug=True) | |