Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -15,34 +20,39 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
@@ -59,6 +69,5 @@ demo = gr.ChatInterface(
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load the model and tokenizer locally in bfloat16 precision
|
6 |
+
model_name = "vietdata/llama32_1b_pub"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
torch_dtype=torch.bfloat16, # Load model in bfloat16 precision
|
11 |
+
device_map="auto" if torch.cuda.is_available() else None, # Automatically map to available devices
|
12 |
+
)
|
13 |
|
14 |
+
# Define the respond function
|
15 |
def respond(
|
16 |
message,
|
17 |
history: list[tuple[str, str]],
|
|
|
20 |
temperature,
|
21 |
top_p,
|
22 |
):
|
23 |
+
from transformers import TextGenerationPipeline
|
24 |
|
25 |
+
# Build the conversation context
|
26 |
+
prompt = system_message + "\n"
|
27 |
+
for user_msg, bot_msg in history:
|
28 |
+
if user_msg:
|
29 |
+
prompt += f"User: {user_msg}\n"
|
30 |
+
if bot_msg:
|
31 |
+
prompt += f"Bot: {bot_msg}\n"
|
32 |
+
prompt += f"User: {message}\nBot:"
|
33 |
|
34 |
+
# Set up a text generation pipeline
|
35 |
+
pipe = TextGenerationPipeline(
|
36 |
+
model=model,
|
37 |
+
tokenizer=tokenizer,
|
38 |
+
device=torch.cuda.current_device() if torch.cuda.is_available() else -1
|
39 |
+
)
|
40 |
|
41 |
+
# Generate the response
|
42 |
+
response = pipe(
|
43 |
+
prompt,
|
44 |
+
max_length=len(prompt) + max_tokens,
|
|
|
|
|
45 |
temperature=temperature,
|
46 |
top_p=top_p,
|
47 |
+
pad_token_id=tokenizer.eos_token_id
|
48 |
+
)[0]["generated_text"]
|
49 |
|
50 |
+
# Extract the generated part only
|
51 |
+
generated_response = response[len(prompt):]
|
52 |
+
yield generated_response
|
53 |
|
54 |
|
55 |
+
# Gradio app definition
|
|
|
|
|
56 |
demo = gr.ChatInterface(
|
57 |
respond,
|
58 |
additional_inputs=[
|
|
|
69 |
],
|
70 |
)
|
71 |
|
|
|
72 |
if __name__ == "__main__":
|
73 |
demo.launch()
|