manu's picture
Update app.py
8b7cf39 verified
raw
history blame
6.89 kB
import gradio as gr
from app.utils import add_rank_and_format, filter_models, get_refresh_function
from data.model_handler import ModelHandler
METRICS = ["ndcg_at_5", "recall_at_1"]
def main():
model_handler = ModelHandler()
initial_metric = "ndcg_at_5"
data = model_handler.get_vidore_data(initial_metric)
data = add_rank_and_format(data)
NUM_DATASETS = len(data.columns) - 3
NUM_SCORES = len(data) * NUM_DATASETS
NUM_MODELS = len(data)
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
#markdown size
.markdown {
font-size: 1rem;
}
"""
with gr.Blocks(css=css) as block:
with gr.Tabs():
with gr.TabItem("πŸ† Leaderboard"):
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark πŸ“šπŸ”")
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models πŸ‘€")
gr.Markdown(
"""
Visual Document Retrieval Benchmark leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
"""
)
datasets_columns = list(data.columns[3:])
anchor_columns = list(data.columns[:3])
default_columns = anchor_columns + datasets_columns
with gr.Row():
metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox = gr.Textbox(placeholder="πŸ” Search Models... [press enter]", label="Filter Models by Name", )
column_checkboxes = gr.CheckboxGroup(choices=datasets_columns, value=default_columns, label="Select Columns to Display")
with gr.Row():
datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")
def update_data(metric, search_term, selected_columns):
data = model_handler.get_vidore_data(metric)
data = add_rank_and_format(data)
data = filter_models(data, search_term)
if selected_columns:
selected_columns = selected_columns
data = data[selected_columns]
return data
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
research_textbox.submit(
lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns),
inputs=[metric_dropdown, research_textbox, column_checkboxes],
outputs=dataframe
)
column_checkboxes.change(
lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns),
inputs=[metric_dropdown, research_textbox, column_checkboxes],
outputs=dataframe
)
#column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)
gr.Markdown(
f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and CΓ©line Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```
"""
)
with gr.TabItem("πŸ“š Submit your model"):
gr.Markdown("# How to Submit a New Model to the Leaderboard")
gr.Markdown(
"""
To submit a new model to the ViDoRe leaderboard, follow these steps:
1. **Evaluate your model**:
- Follow the evaluation script provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/)
2. **Format your submission file**:
- The submission file should automatically be generated, and named `results.json` with the following structure:
```json
{
"dataset_name_1": {
"metric_1": score_1,
"metric_2": score_2,
...
},
"dataset_name_2": {
"metric_1": score_1,
"metric_2": score_2,
...
},
}
```
- The dataset names should be the same as the ViDoRe dataset names listed in the following collection: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).
3. **Submit your model**:
- Create a public HuggingFace model repository with your model.
- Add the tag `vidore` to your model in the metadata of the model card and place the `results.json` file at the root.
And you're done! Your model will appear on the leaderboard when you click refresh! Once the space gets rebooted, it will appear on startup.
"""
)
block.queue(max_size=10).launch(debug=True)
if __name__ == "__main__":
main()