Spaces:
Runtime error
Runtime error
ShaoTengLiu
commited on
Commit
•
e5176ce
1
Parent(s):
2d81855
add UI from TAV
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- Dockerfile +57 -0
- LICENSE +21 -0
- Video-P2P-Demo/.DS_Store +0 -0
- Video-P2P-Demo/README.md +27 -0
- {configs → Video-P2P-Demo/configs}/.DS_Store +0 -0
- {configs → Video-P2P-Demo/configs}/man-motor-tune.yaml +0 -0
- {configs → Video-P2P-Demo/configs}/rabbit-jump-p2p.yaml +0 -0
- {configs → Video-P2P-Demo/configs}/rabbit-jump-tune.yaml +0 -0
- {data → Video-P2P-Demo/data}/.DS_Store +0 -0
- {data → Video-P2P-Demo/data}/motorbike/.DS_Store +0 -0
- {data → Video-P2P-Demo/data}/motorbike/1.jpg +0 -0
- {data → Video-P2P-Demo/data}/motorbike/2.jpg +0 -0
- {data → Video-P2P-Demo/data}/motorbike/3.jpg +0 -0
- {data → Video-P2P-Demo/data}/motorbike/4.jpg +0 -0
- {data → Video-P2P-Demo/data}/motorbike/5.jpg +0 -0
- {data → Video-P2P-Demo/data}/motorbike/6.jpg +0 -0
- {data → Video-P2P-Demo/data}/motorbike/7.jpg +0 -0
- {data → Video-P2P-Demo/data}/motorbike/8.jpg +0 -0
- {data → Video-P2P-Demo/data}/rabbit/1.jpg +0 -0
- {data → Video-P2P-Demo/data}/rabbit/2.jpg +0 -0
- {data → Video-P2P-Demo/data}/rabbit/3.jpg +0 -0
- {data → Video-P2P-Demo/data}/rabbit/4.jpg +0 -0
- {data → Video-P2P-Demo/data}/rabbit/5.jpg +0 -0
- {data → Video-P2P-Demo/data}/rabbit/6.jpg +0 -0
- {data → Video-P2P-Demo/data}/rabbit/7.jpg +0 -0
- {data → Video-P2P-Demo/data}/rabbit/8.jpg +0 -0
- ptp_utils.py → Video-P2P-Demo/ptp_utils.py +0 -0
- Video-P2P-Demo/requirements.txt +15 -0
- run_tuning.py → Video-P2P-Demo/run_tuning.py +0 -0
- run_videop2p.py → Video-P2P-Demo/run_videop2p.py +0 -0
- script.sh → Video-P2P-Demo/script.sh +0 -0
- seq_aligner.py → Video-P2P-Demo/seq_aligner.py +0 -0
- {tuneavideo → Video-P2P-Demo/tuneavideo}/data/dataset.py +0 -0
- {tuneavideo → Video-P2P-Demo/tuneavideo}/models/attention.py +0 -0
- {tuneavideo → Video-P2P-Demo/tuneavideo}/models/resnet.py +0 -0
- {tuneavideo → Video-P2P-Demo/tuneavideo}/models/unet.py +0 -0
- {tuneavideo → Video-P2P-Demo/tuneavideo}/models/unet_blocks.py +0 -0
- {tuneavideo → Video-P2P-Demo/tuneavideo}/pipelines/pipeline_tuneavideo.py +0 -0
- {tuneavideo → Video-P2P-Demo/tuneavideo}/util.py +0 -0
- app.py +84 -0
- app_inference.py +170 -0
- app_training.py +135 -0
- app_upload.py +106 -0
- constants.py +10 -0
- inference.py +109 -0
- packages.txt +1 -0
- patch +15 -0
- style.css +3 -0
- trainer.py +166 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
Dockerfile
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu22.04
|
2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
3 |
+
RUN apt-get update && \
|
4 |
+
apt-get upgrade -y && \
|
5 |
+
apt-get install -y --no-install-recommends \
|
6 |
+
git \
|
7 |
+
git-lfs \
|
8 |
+
wget \
|
9 |
+
curl \
|
10 |
+
# ffmpeg \
|
11 |
+
ffmpeg \
|
12 |
+
x264 \
|
13 |
+
# python build dependencies \
|
14 |
+
build-essential \
|
15 |
+
libssl-dev \
|
16 |
+
zlib1g-dev \
|
17 |
+
libbz2-dev \
|
18 |
+
libreadline-dev \
|
19 |
+
libsqlite3-dev \
|
20 |
+
libncursesw5-dev \
|
21 |
+
xz-utils \
|
22 |
+
tk-dev \
|
23 |
+
libxml2-dev \
|
24 |
+
libxmlsec1-dev \
|
25 |
+
libffi-dev \
|
26 |
+
liblzma-dev && \
|
27 |
+
apt-get clean && \
|
28 |
+
rm -rf /var/lib/apt/lists/*
|
29 |
+
|
30 |
+
RUN useradd -m -u 1000 user
|
31 |
+
USER user
|
32 |
+
ENV HOME=/home/user \
|
33 |
+
PATH=/home/user/.local/bin:${PATH}
|
34 |
+
WORKDIR ${HOME}/app
|
35 |
+
|
36 |
+
RUN curl https://pyenv.run | bash
|
37 |
+
ENV PATH=${HOME}/.pyenv/shims:${HOME}/.pyenv/bin:${PATH}
|
38 |
+
ENV PYTHON_VERSION=3.10.9
|
39 |
+
RUN pyenv install ${PYTHON_VERSION} && \
|
40 |
+
pyenv global ${PYTHON_VERSION} && \
|
41 |
+
pyenv rehash && \
|
42 |
+
pip install --no-cache-dir -U pip setuptools wheel
|
43 |
+
|
44 |
+
RUN pip install --no-cache-dir -U torch==1.13.1 torchvision==0.14.1
|
45 |
+
COPY --chown=1000 requirements.txt /tmp/requirements.txt
|
46 |
+
RUN pip install --no-cache-dir -U -r /tmp/requirements.txt
|
47 |
+
|
48 |
+
COPY --chown=1000 . ${HOME}/app
|
49 |
+
RUN cd Tune-A-Video && patch -p1 < ../patch
|
50 |
+
ENV PYTHONPATH=${HOME}/app \
|
51 |
+
PYTHONUNBUFFERED=1 \
|
52 |
+
GRADIO_ALLOW_FLAGGING=never \
|
53 |
+
GRADIO_NUM_PORTS=1 \
|
54 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
55 |
+
GRADIO_THEME=huggingface \
|
56 |
+
SYSTEM=spaces
|
57 |
+
CMD ["python", "app.py"]
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 hysts
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
Video-P2P-Demo/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Video-P2P-Demo/README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Video-P2P Demo
|
3 |
+
emoji: 🐶
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
---
|
10 |
+
|
11 |
+
# Video-P2P
|
12 |
+
|
13 |
+
## Setup
|
14 |
+
|
15 |
+
All required packages are listed in the requirements file.
|
16 |
+
The code was tested on a Tesla V100 32GB but should work on other cards with at least **16GB** VRAM.
|
17 |
+
|
18 |
+
## Quickstart
|
19 |
+
|
20 |
+
``` bash
|
21 |
+
bash script.sh
|
22 |
+
```
|
23 |
+
|
24 |
+
## References
|
25 |
+
* prompt-to-prompt: https://github.com/google/prompt-to-prompt
|
26 |
+
* Tune-A-Video: https://github.com/showlab/Tune-A-Video
|
27 |
+
* diffusers: https://github.com/huggingface/diffusers
|
{configs → Video-P2P-Demo/configs}/.DS_Store
RENAMED
File without changes
|
{configs → Video-P2P-Demo/configs}/man-motor-tune.yaml
RENAMED
File without changes
|
{configs → Video-P2P-Demo/configs}/rabbit-jump-p2p.yaml
RENAMED
File without changes
|
{configs → Video-P2P-Demo/configs}/rabbit-jump-tune.yaml
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/.DS_Store
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/.DS_Store
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/1.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/2.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/3.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/4.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/5.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/6.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/7.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/motorbike/8.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/rabbit/1.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/rabbit/2.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/rabbit/3.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/rabbit/4.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/rabbit/5.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/rabbit/6.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/rabbit/7.jpg
RENAMED
File without changes
|
{data → Video-P2P-Demo/data}/rabbit/8.jpg
RENAMED
File without changes
|
ptp_utils.py → Video-P2P-Demo/ptp_utils.py
RENAMED
File without changes
|
Video-P2P-Demo/requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.1
|
2 |
+
torchvision==0.13.1
|
3 |
+
diffusers[torch]==0.11.1
|
4 |
+
transformers>=4.25.1
|
5 |
+
bitsandbytes==0.35.4
|
6 |
+
decord==0.6.0
|
7 |
+
accelerate
|
8 |
+
tensorboard
|
9 |
+
modelcards
|
10 |
+
omegaconf
|
11 |
+
einops
|
12 |
+
imageio
|
13 |
+
ftfy
|
14 |
+
opencv-python
|
15 |
+
ipywidgets
|
run_tuning.py → Video-P2P-Demo/run_tuning.py
RENAMED
File without changes
|
run_videop2p.py → Video-P2P-Demo/run_videop2p.py
RENAMED
File without changes
|
script.sh → Video-P2P-Demo/script.sh
RENAMED
File without changes
|
seq_aligner.py → Video-P2P-Demo/seq_aligner.py
RENAMED
File without changes
|
{tuneavideo → Video-P2P-Demo/tuneavideo}/data/dataset.py
RENAMED
File without changes
|
{tuneavideo → Video-P2P-Demo/tuneavideo}/models/attention.py
RENAMED
File without changes
|
{tuneavideo → Video-P2P-Demo/tuneavideo}/models/resnet.py
RENAMED
File without changes
|
{tuneavideo → Video-P2P-Demo/tuneavideo}/models/unet.py
RENAMED
File without changes
|
{tuneavideo → Video-P2P-Demo/tuneavideo}/models/unet_blocks.py
RENAMED
File without changes
|
{tuneavideo → Video-P2P-Demo/tuneavideo}/pipelines/pipeline_tuneavideo.py
RENAMED
File without changes
|
{tuneavideo → Video-P2P-Demo/tuneavideo}/util.py
RENAMED
File without changes
|
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
from subprocess import getoutput
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
|
11 |
+
# from app_inference import create_inference_demo
|
12 |
+
from app_training import create_training_demo
|
13 |
+
# from app_upload import create_upload_demo
|
14 |
+
from inference import InferencePipeline
|
15 |
+
from trainer import Trainer
|
16 |
+
|
17 |
+
TITLE = '# [Video-P2P](https://video-p2p.github.io/) UI'
|
18 |
+
|
19 |
+
ORIGINAL_SPACE_ID = 'Shaldon/Video-P2P-Training-UI'
|
20 |
+
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
21 |
+
GPU_DATA = getoutput('nvidia-smi')
|
22 |
+
SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
23 |
+
|
24 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
25 |
+
'''
|
26 |
+
|
27 |
+
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
|
28 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
29 |
+
else:
|
30 |
+
SETTINGS = 'Settings'
|
31 |
+
|
32 |
+
INVALID_GPU_WARNING = f'''## Attention - the specified GPU is invalid. Training may not work. Make sure you have selected a `T4 GPU` for this task.'''
|
33 |
+
|
34 |
+
CUDA_NOT_AVAILABLE_WARNING = f'''## Attention - Running on CPU.
|
35 |
+
<center>
|
36 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
37 |
+
You can use "T4 small/medium" to run this demo.
|
38 |
+
</center>
|
39 |
+
'''
|
40 |
+
|
41 |
+
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run.
|
42 |
+
<center>
|
43 |
+
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>.
|
44 |
+
You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
|
45 |
+
</center>
|
46 |
+
'''
|
47 |
+
|
48 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
49 |
+
|
50 |
+
|
51 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
with gr.Box():
|
54 |
+
gr.Markdown(warning_text)
|
55 |
+
return demo
|
56 |
+
|
57 |
+
|
58 |
+
pipe = InferencePipeline(HF_TOKEN)
|
59 |
+
trainer = Trainer(HF_TOKEN)
|
60 |
+
|
61 |
+
with gr.Blocks(css='style.css') as demo:
|
62 |
+
if SPACE_ID == ORIGINAL_SPACE_ID:
|
63 |
+
show_warning(SHARED_UI_WARNING)
|
64 |
+
elif not torch.cuda.is_available():
|
65 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
66 |
+
elif (not 'T4' in GPU_DATA):
|
67 |
+
show_warning(INVALID_GPU_WARNING)
|
68 |
+
|
69 |
+
gr.Markdown(TITLE)
|
70 |
+
with gr.Tabs():
|
71 |
+
with gr.TabItem('Train'):
|
72 |
+
create_training_demo(trainer, pipe)
|
73 |
+
# with gr.TabItem('Run'):
|
74 |
+
# create_inference_demo(pipe, HF_TOKEN)
|
75 |
+
# with gr.TabItem('Upload'):
|
76 |
+
# gr.Markdown('''
|
77 |
+
# - You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
|
78 |
+
# ''')
|
79 |
+
# create_upload_demo(HF_TOKEN)
|
80 |
+
|
81 |
+
if not HF_TOKEN:
|
82 |
+
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
|
83 |
+
|
84 |
+
demo.queue(max_size=1).launch(share=False)
|
app_inference.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import enum
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
|
11 |
+
from inference import InferencePipeline
|
12 |
+
from utils import find_exp_dirs
|
13 |
+
|
14 |
+
|
15 |
+
class ModelSource(enum.Enum):
|
16 |
+
HUB_LIB = UploadTarget.MODEL_LIBRARY.value
|
17 |
+
LOCAL = 'Local'
|
18 |
+
|
19 |
+
|
20 |
+
class InferenceUtil:
|
21 |
+
def __init__(self, hf_token: str | None):
|
22 |
+
self.hf_token = hf_token
|
23 |
+
|
24 |
+
def load_hub_model_list(self) -> dict:
|
25 |
+
api = HfApi(token=self.hf_token)
|
26 |
+
choices = [
|
27 |
+
info.modelId
|
28 |
+
for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)
|
29 |
+
]
|
30 |
+
return gr.update(choices=choices,
|
31 |
+
value=choices[0] if choices else None)
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def load_local_model_list() -> dict:
|
35 |
+
choices = find_exp_dirs()
|
36 |
+
return gr.update(choices=choices,
|
37 |
+
value=choices[0] if choices else None)
|
38 |
+
|
39 |
+
def reload_model_list(self, model_source: str) -> dict:
|
40 |
+
if model_source == ModelSource.HUB_LIB.value:
|
41 |
+
return self.load_hub_model_list()
|
42 |
+
elif model_source == ModelSource.LOCAL.value:
|
43 |
+
return self.load_local_model_list()
|
44 |
+
else:
|
45 |
+
raise ValueError
|
46 |
+
|
47 |
+
def load_model_info(self, model_id: str) -> tuple[str, str]:
|
48 |
+
try:
|
49 |
+
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
50 |
+
except Exception:
|
51 |
+
return '', ''
|
52 |
+
base_model = getattr(card.data, 'base_model', '')
|
53 |
+
training_prompt = getattr(card.data, 'training_prompt', '')
|
54 |
+
return base_model, training_prompt
|
55 |
+
|
56 |
+
def reload_model_list_and_update_model_info(
|
57 |
+
self, model_source: str) -> tuple[dict, str, str]:
|
58 |
+
model_list_update = self.reload_model_list(model_source)
|
59 |
+
model_list = model_list_update['choices']
|
60 |
+
model_info = self.load_model_info(model_list[0] if model_list else '')
|
61 |
+
return model_list_update, *model_info
|
62 |
+
|
63 |
+
|
64 |
+
def create_inference_demo(pipe: InferencePipeline,
|
65 |
+
hf_token: str | None = None) -> gr.Blocks:
|
66 |
+
app = InferenceUtil(hf_token)
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
with gr.Box():
|
72 |
+
model_source = gr.Radio(
|
73 |
+
label='Model Source',
|
74 |
+
choices=[_.value for _ in ModelSource],
|
75 |
+
value=ModelSource.HUB_LIB.value)
|
76 |
+
reload_button = gr.Button('Reload Model List')
|
77 |
+
model_id = gr.Dropdown(label='Model ID',
|
78 |
+
choices=None,
|
79 |
+
value=None)
|
80 |
+
with gr.Accordion(
|
81 |
+
label=
|
82 |
+
'Model info (Base model and prompt used for training)',
|
83 |
+
open=False):
|
84 |
+
with gr.Row():
|
85 |
+
base_model_used_for_training = gr.Text(
|
86 |
+
label='Base model', interactive=False)
|
87 |
+
prompt_used_for_training = gr.Text(
|
88 |
+
label='Training prompt', interactive=False)
|
89 |
+
prompt = gr.Textbox(
|
90 |
+
label='Prompt',
|
91 |
+
max_lines=1,
|
92 |
+
placeholder='Example: "A panda is surfing"')
|
93 |
+
video_length = gr.Slider(label='Video length',
|
94 |
+
minimum=4,
|
95 |
+
maximum=12,
|
96 |
+
step=1,
|
97 |
+
value=8)
|
98 |
+
fps = gr.Slider(label='FPS',
|
99 |
+
minimum=1,
|
100 |
+
maximum=12,
|
101 |
+
step=1,
|
102 |
+
value=1)
|
103 |
+
seed = gr.Slider(label='Seed',
|
104 |
+
minimum=0,
|
105 |
+
maximum=100000,
|
106 |
+
step=1,
|
107 |
+
value=0)
|
108 |
+
with gr.Accordion('Other Parameters', open=False):
|
109 |
+
num_steps = gr.Slider(label='Number of Steps',
|
110 |
+
minimum=0,
|
111 |
+
maximum=100,
|
112 |
+
step=1,
|
113 |
+
value=50)
|
114 |
+
guidance_scale = gr.Slider(label='CFG Scale',
|
115 |
+
minimum=0,
|
116 |
+
maximum=50,
|
117 |
+
step=0.1,
|
118 |
+
value=7.5)
|
119 |
+
|
120 |
+
run_button = gr.Button('Generate')
|
121 |
+
|
122 |
+
gr.Markdown('''
|
123 |
+
- After training, you can press "Reload Model List" button to load your trained model names.
|
124 |
+
- It takes a few minutes to download model first.
|
125 |
+
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
|
126 |
+
''')
|
127 |
+
with gr.Column():
|
128 |
+
result = gr.Video(label='Result')
|
129 |
+
|
130 |
+
model_source.change(fn=app.reload_model_list_and_update_model_info,
|
131 |
+
inputs=model_source,
|
132 |
+
outputs=[
|
133 |
+
model_id,
|
134 |
+
base_model_used_for_training,
|
135 |
+
prompt_used_for_training,
|
136 |
+
])
|
137 |
+
reload_button.click(fn=app.reload_model_list_and_update_model_info,
|
138 |
+
inputs=model_source,
|
139 |
+
outputs=[
|
140 |
+
model_id,
|
141 |
+
base_model_used_for_training,
|
142 |
+
prompt_used_for_training,
|
143 |
+
])
|
144 |
+
model_id.change(fn=app.load_model_info,
|
145 |
+
inputs=model_id,
|
146 |
+
outputs=[
|
147 |
+
base_model_used_for_training,
|
148 |
+
prompt_used_for_training,
|
149 |
+
])
|
150 |
+
inputs = [
|
151 |
+
model_id,
|
152 |
+
prompt,
|
153 |
+
video_length,
|
154 |
+
fps,
|
155 |
+
seed,
|
156 |
+
num_steps,
|
157 |
+
guidance_scale,
|
158 |
+
]
|
159 |
+
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
|
160 |
+
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
|
161 |
+
return demo
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == '__main__':
|
165 |
+
import os
|
166 |
+
|
167 |
+
hf_token = os.getenv('HF_TOKEN')
|
168 |
+
pipe = InferencePipeline(hf_token)
|
169 |
+
demo = create_inference_demo(pipe, hf_token)
|
170 |
+
demo.queue(max_size=10).launch(share=False)
|
app_training.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from constants import MODEL_LIBRARY_ORG_NAME, SAMPLE_MODEL_REPO, UploadTarget
|
10 |
+
from inference import InferencePipeline
|
11 |
+
from trainer import Trainer
|
12 |
+
|
13 |
+
|
14 |
+
def create_training_demo(trainer: Trainer,
|
15 |
+
pipe: InferencePipeline | None = None) -> gr.Blocks:
|
16 |
+
hf_token = os.getenv('HF_TOKEN')
|
17 |
+
with gr.Blocks() as demo:
|
18 |
+
with gr.Row():
|
19 |
+
with gr.Column():
|
20 |
+
with gr.Box():
|
21 |
+
gr.Markdown('Training Data')
|
22 |
+
training_video = gr.File(label='Training video')
|
23 |
+
training_prompt = gr.Textbox(
|
24 |
+
label='Training prompt',
|
25 |
+
max_lines=1,
|
26 |
+
placeholder='A rabbit is jumping on the grass')
|
27 |
+
gr.Markdown('''
|
28 |
+
- Upload a video and write a `Training Prompt` that describes the video.
|
29 |
+
''')
|
30 |
+
|
31 |
+
with gr.Column():
|
32 |
+
with gr.Box():
|
33 |
+
gr.Markdown('Training Parameters')
|
34 |
+
with gr.Row():
|
35 |
+
base_model = gr.Text(
|
36 |
+
label='Base Model',
|
37 |
+
value='CompVis/stable-diffusion-v1-5',
|
38 |
+
max_lines=1)
|
39 |
+
resolution = gr.Dropdown(choices=['512', '768'],
|
40 |
+
value='512',
|
41 |
+
label='Resolution',
|
42 |
+
visible=False)
|
43 |
+
|
44 |
+
input_token = gr.Text(label='Hugging Face Write Token',
|
45 |
+
placeholder='',
|
46 |
+
visible=False if hf_token else True)
|
47 |
+
with gr.Accordion('Advanced settings', open=False):
|
48 |
+
num_training_steps = gr.Number(
|
49 |
+
label='Number of Training Steps',
|
50 |
+
value=300,
|
51 |
+
precision=0)
|
52 |
+
learning_rate = gr.Number(label='Learning Rate',
|
53 |
+
value=0.000035)
|
54 |
+
gradient_accumulation = gr.Number(
|
55 |
+
label='Number of Gradient Accumulation',
|
56 |
+
value=1,
|
57 |
+
precision=0)
|
58 |
+
seed = gr.Slider(label='Seed',
|
59 |
+
minimum=0,
|
60 |
+
maximum=100000,
|
61 |
+
step=1,
|
62 |
+
randomize=True,
|
63 |
+
value=0)
|
64 |
+
fp16 = gr.Checkbox(label='FP16', value=True)
|
65 |
+
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam',
|
66 |
+
value=False)
|
67 |
+
checkpointing_steps = gr.Number(
|
68 |
+
label='Checkpointing Steps',
|
69 |
+
value=1000,
|
70 |
+
precision=0)
|
71 |
+
validation_epochs = gr.Number(
|
72 |
+
label='Validation Epochs', value=100, precision=0)
|
73 |
+
gr.Markdown('''
|
74 |
+
- The base model must be a Stable Diffusion model compatible with [diffusers](https://github.com/huggingface/diffusers) library.
|
75 |
+
- Expected time to train a model for 300 steps: ~20 minutes with T4
|
76 |
+
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
|
77 |
+
''')
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
with gr.Column():
|
81 |
+
gr.Markdown('Output Model')
|
82 |
+
output_model_name = gr.Text(label='Name of your model',
|
83 |
+
placeholder='The surfer man',
|
84 |
+
max_lines=1)
|
85 |
+
validation_prompt = gr.Text(
|
86 |
+
label='Validation Prompt',
|
87 |
+
placeholder=
|
88 |
+
'prompt to test the model, e.g: a dog is surfing')
|
89 |
+
with gr.Column():
|
90 |
+
gr.Markdown('Upload Settings')
|
91 |
+
with gr.Row():
|
92 |
+
upload_to_hub = gr.Checkbox(label='Upload model to Hub',
|
93 |
+
value=True)
|
94 |
+
use_private_repo = gr.Checkbox(label='Private', value=True)
|
95 |
+
delete_existing_repo = gr.Checkbox(
|
96 |
+
label='Delete existing repo of the same name',
|
97 |
+
value=False)
|
98 |
+
upload_to = gr.Radio(
|
99 |
+
label='Upload to',
|
100 |
+
choices=[_.value for _ in UploadTarget],
|
101 |
+
value=UploadTarget.MODEL_LIBRARY.value)
|
102 |
+
|
103 |
+
remove_gpu_after_training = gr.Checkbox(
|
104 |
+
label='Remove GPU after training',
|
105 |
+
value=False,
|
106 |
+
interactive=bool(os.getenv('SPACE_ID')),
|
107 |
+
visible=False)
|
108 |
+
run_button = gr.Button('Start Training')
|
109 |
+
|
110 |
+
with gr.Box():
|
111 |
+
gr.Markdown('Output message')
|
112 |
+
output_message = gr.Markdown()
|
113 |
+
|
114 |
+
if pipe is not None:
|
115 |
+
run_button.click(fn=pipe.clear)
|
116 |
+
run_button.click(
|
117 |
+
fn=trainer.run,
|
118 |
+
inputs=[
|
119 |
+
training_video, training_prompt, output_model_name,
|
120 |
+
delete_existing_repo, validation_prompt, base_model,
|
121 |
+
resolution, num_training_steps, learning_rate,
|
122 |
+
gradient_accumulation, seed, fp16, use_8bit_adam,
|
123 |
+
checkpointing_steps, validation_epochs, upload_to_hub,
|
124 |
+
use_private_repo, delete_existing_repo, upload_to,
|
125 |
+
remove_gpu_after_training, input_token
|
126 |
+
],
|
127 |
+
outputs=output_message)
|
128 |
+
return demo
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == '__main__':
|
132 |
+
hf_token = os.getenv('HF_TOKEN')
|
133 |
+
trainer = Trainer(hf_token)
|
134 |
+
demo = create_training_demo(trainer)
|
135 |
+
demo.queue(max_size=1).launch(share=False)
|
app_upload.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import pathlib
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import slugify
|
9 |
+
|
10 |
+
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
|
11 |
+
from uploader import Uploader
|
12 |
+
from utils import find_exp_dirs
|
13 |
+
|
14 |
+
|
15 |
+
class ModelUploader(Uploader):
|
16 |
+
def upload_model(
|
17 |
+
self,
|
18 |
+
folder_path: str,
|
19 |
+
repo_name: str,
|
20 |
+
upload_to: str,
|
21 |
+
private: bool,
|
22 |
+
delete_existing_repo: bool,
|
23 |
+
input_token: str | None = None,
|
24 |
+
) -> str:
|
25 |
+
if not folder_path:
|
26 |
+
raise ValueError
|
27 |
+
if not repo_name:
|
28 |
+
repo_name = pathlib.Path(folder_path).name
|
29 |
+
repo_name = slugify.slugify(repo_name)
|
30 |
+
|
31 |
+
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
|
32 |
+
organization = ''
|
33 |
+
elif upload_to == UploadTarget.MODEL_LIBRARY.value:
|
34 |
+
organization = MODEL_LIBRARY_ORG_NAME
|
35 |
+
else:
|
36 |
+
raise ValueError
|
37 |
+
|
38 |
+
return self.upload(folder_path,
|
39 |
+
repo_name,
|
40 |
+
organization=organization,
|
41 |
+
private=private,
|
42 |
+
delete_existing_repo=delete_existing_repo,
|
43 |
+
input_token=input_token)
|
44 |
+
|
45 |
+
|
46 |
+
def load_local_model_list() -> dict:
|
47 |
+
choices = find_exp_dirs()
|
48 |
+
return gr.update(choices=choices, value=choices[0] if choices else None)
|
49 |
+
|
50 |
+
|
51 |
+
def create_upload_demo(hf_token: str | None) -> gr.Blocks:
|
52 |
+
uploader = ModelUploader(hf_token)
|
53 |
+
model_dirs = find_exp_dirs()
|
54 |
+
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
with gr.Box():
|
57 |
+
gr.Markdown('Local Models')
|
58 |
+
reload_button = gr.Button('Reload Model List')
|
59 |
+
model_dir = gr.Dropdown(
|
60 |
+
label='Model names',
|
61 |
+
choices=model_dirs,
|
62 |
+
value=model_dirs[0] if model_dirs else None)
|
63 |
+
with gr.Box():
|
64 |
+
gr.Markdown('Upload Settings')
|
65 |
+
with gr.Row():
|
66 |
+
use_private_repo = gr.Checkbox(label='Private', value=True)
|
67 |
+
delete_existing_repo = gr.Checkbox(
|
68 |
+
label='Delete existing repo of the same name', value=False)
|
69 |
+
upload_to = gr.Radio(label='Upload to',
|
70 |
+
choices=[_.value for _ in UploadTarget],
|
71 |
+
value=UploadTarget.MODEL_LIBRARY.value)
|
72 |
+
model_name = gr.Textbox(label='Model Name')
|
73 |
+
input_token = gr.Text(label='Hugging Face Write Token',
|
74 |
+
placeholder='',
|
75 |
+
visible=False if hf_token else True)
|
76 |
+
upload_button = gr.Button('Upload')
|
77 |
+
gr.Markdown(f'''
|
78 |
+
- You can upload your trained model to your personal profile (i.e. https://huggingface.co/{{your_username}}/{{model_name}}) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}).
|
79 |
+
''')
|
80 |
+
with gr.Box():
|
81 |
+
gr.Markdown('Output message')
|
82 |
+
output_message = gr.Markdown()
|
83 |
+
|
84 |
+
reload_button.click(fn=load_local_model_list,
|
85 |
+
inputs=None,
|
86 |
+
outputs=model_dir)
|
87 |
+
upload_button.click(fn=uploader.upload_model,
|
88 |
+
inputs=[
|
89 |
+
model_dir,
|
90 |
+
model_name,
|
91 |
+
upload_to,
|
92 |
+
use_private_repo,
|
93 |
+
delete_existing_repo,
|
94 |
+
input_token,
|
95 |
+
],
|
96 |
+
outputs=output_message)
|
97 |
+
|
98 |
+
return demo
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == '__main__':
|
102 |
+
import os
|
103 |
+
|
104 |
+
hf_token = os.getenv('HF_TOKEN')
|
105 |
+
demo = create_upload_demo(hf_token)
|
106 |
+
demo.queue(max_size=1).launch(share=False)
|
constants.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
|
3 |
+
|
4 |
+
class UploadTarget(enum.Enum):
|
5 |
+
PERSONAL_PROFILE = 'Personal Profile'
|
6 |
+
MODEL_LIBRARY = 'Tune-A-Video Library'
|
7 |
+
|
8 |
+
|
9 |
+
MODEL_LIBRARY_ORG_NAME = 'Tune-A-Video-library'
|
10 |
+
SAMPLE_MODEL_REPO = 'Tune-A-Video-library/a-man-is-surfing'
|
inference.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gc
|
4 |
+
import pathlib
|
5 |
+
import sys
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import imageio
|
10 |
+
import PIL.Image
|
11 |
+
import torch
|
12 |
+
from diffusers.utils.import_utils import is_xformers_available
|
13 |
+
from einops import rearrange
|
14 |
+
from huggingface_hub import ModelCard
|
15 |
+
|
16 |
+
sys.path.append('Tune-A-Video')
|
17 |
+
|
18 |
+
from tuneavideo.models.unet import UNet3DConditionModel
|
19 |
+
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
20 |
+
|
21 |
+
|
22 |
+
class InferencePipeline:
|
23 |
+
def __init__(self, hf_token: str | None = None):
|
24 |
+
self.hf_token = hf_token
|
25 |
+
self.pipe = None
|
26 |
+
self.device = torch.device(
|
27 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
28 |
+
self.model_id = None
|
29 |
+
|
30 |
+
def clear(self) -> None:
|
31 |
+
self.model_id = None
|
32 |
+
del self.pipe
|
33 |
+
self.pipe = None
|
34 |
+
torch.cuda.empty_cache()
|
35 |
+
gc.collect()
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def check_if_model_is_local(model_id: str) -> bool:
|
39 |
+
return pathlib.Path(model_id).exists()
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def get_model_card(model_id: str,
|
43 |
+
hf_token: str | None = None) -> ModelCard:
|
44 |
+
if InferencePipeline.check_if_model_is_local(model_id):
|
45 |
+
card_path = (pathlib.Path(model_id) / 'README.md').as_posix()
|
46 |
+
else:
|
47 |
+
card_path = model_id
|
48 |
+
return ModelCard.load(card_path, token=hf_token)
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def get_base_model_info(model_id: str, hf_token: str | None = None) -> str:
|
52 |
+
card = InferencePipeline.get_model_card(model_id, hf_token)
|
53 |
+
return card.data.base_model
|
54 |
+
|
55 |
+
def load_pipe(self, model_id: str) -> None:
|
56 |
+
if model_id == self.model_id:
|
57 |
+
return
|
58 |
+
base_model_id = self.get_base_model_info(model_id, self.hf_token)
|
59 |
+
unet = UNet3DConditionModel.from_pretrained(
|
60 |
+
model_id,
|
61 |
+
subfolder='unet',
|
62 |
+
torch_dtype=torch.float16,
|
63 |
+
use_auth_token=self.hf_token)
|
64 |
+
pipe = TuneAVideoPipeline.from_pretrained(base_model_id,
|
65 |
+
unet=unet,
|
66 |
+
torch_dtype=torch.float16,
|
67 |
+
use_auth_token=self.hf_token)
|
68 |
+
pipe = pipe.to(self.device)
|
69 |
+
if is_xformers_available():
|
70 |
+
pipe.unet.enable_xformers_memory_efficient_attention()
|
71 |
+
self.pipe = pipe
|
72 |
+
self.model_id = model_id # type: ignore
|
73 |
+
|
74 |
+
def run(
|
75 |
+
self,
|
76 |
+
model_id: str,
|
77 |
+
prompt: str,
|
78 |
+
video_length: int,
|
79 |
+
fps: int,
|
80 |
+
seed: int,
|
81 |
+
n_steps: int,
|
82 |
+
guidance_scale: float,
|
83 |
+
) -> PIL.Image.Image:
|
84 |
+
if not torch.cuda.is_available():
|
85 |
+
raise gr.Error('CUDA is not available.')
|
86 |
+
|
87 |
+
self.load_pipe(model_id)
|
88 |
+
|
89 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
90 |
+
out = self.pipe(
|
91 |
+
prompt,
|
92 |
+
video_length=video_length,
|
93 |
+
width=512,
|
94 |
+
height=512,
|
95 |
+
num_inference_steps=n_steps,
|
96 |
+
guidance_scale=guidance_scale,
|
97 |
+
generator=generator,
|
98 |
+
) # type: ignore
|
99 |
+
|
100 |
+
frames = rearrange(out.videos[0], 'c t h w -> t h w c')
|
101 |
+
frames = (frames * 255).to(torch.uint8).numpy()
|
102 |
+
|
103 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
104 |
+
writer = imageio.get_writer(out_file.name, fps=fps)
|
105 |
+
for frame in frames:
|
106 |
+
writer.append_data(frame)
|
107 |
+
writer.close()
|
108 |
+
|
109 |
+
return out_file.name
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
patch
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/train_tuneavideo.py b/train_tuneavideo.py
|
2 |
+
index 66d51b2..86b2a5d 100644
|
3 |
+
--- a/train_tuneavideo.py
|
4 |
+
+++ b/train_tuneavideo.py
|
5 |
+
@@ -94,8 +94,8 @@ def main(
|
6 |
+
|
7 |
+
# Handle the output folder creation
|
8 |
+
if accelerator.is_main_process:
|
9 |
+
- now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
10 |
+
- output_dir = os.path.join(output_dir, now)
|
11 |
+
+ #now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
12 |
+
+ #output_dir = os.path.join(output_dir, now)
|
13 |
+
os.makedirs(output_dir, exist_ok=True)
|
14 |
+
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
|
15 |
+
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
trainer.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import datetime
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import shlex
|
7 |
+
import shutil
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import slugify
|
13 |
+
import torch
|
14 |
+
from huggingface_hub import HfApi
|
15 |
+
from omegaconf import OmegaConf
|
16 |
+
|
17 |
+
from app_upload import ModelUploader
|
18 |
+
from utils import save_model_card
|
19 |
+
|
20 |
+
sys.path.append('Video-P2P-Demo')
|
21 |
+
|
22 |
+
# URL_TO_JOIN_MODEL_LIBRARY_ORG = 'https://huggingface.co/organizations/Tune-A-Video-library/share/YjTcaNJmKyeHFpMBioHhzBcTzCYddVErEk'
|
23 |
+
ORIGINAL_SPACE_ID = 'Shaldon/Video-P2P-Training-UI'
|
24 |
+
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
25 |
+
|
26 |
+
|
27 |
+
class Trainer:
|
28 |
+
def __init__(self, hf_token: str | None = None):
|
29 |
+
self.hf_token = hf_token
|
30 |
+
self.model_uploader = ModelUploader(hf_token)
|
31 |
+
|
32 |
+
self.checkpoint_dir = pathlib.Path('checkpoints')
|
33 |
+
self.checkpoint_dir.mkdir(exist_ok=True)
|
34 |
+
|
35 |
+
def download_base_model(self, base_model_id: str) -> str:
|
36 |
+
model_dir = self.checkpoint_dir / base_model_id
|
37 |
+
if not model_dir.exists():
|
38 |
+
org_name = base_model_id.split('/')[0]
|
39 |
+
org_dir = self.checkpoint_dir / org_name
|
40 |
+
org_dir.mkdir(exist_ok=True)
|
41 |
+
subprocess.run(shlex.split(
|
42 |
+
f'git clone https://huggingface.co/{base_model_id}'),
|
43 |
+
cwd=org_dir)
|
44 |
+
return model_dir.as_posix()
|
45 |
+
|
46 |
+
# def join_model_library_org(self, token: str) -> None:
|
47 |
+
# subprocess.run(
|
48 |
+
# shlex.split(
|
49 |
+
# f'curl -X POST -H "Authorization: Bearer {token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
|
50 |
+
# ))
|
51 |
+
|
52 |
+
def run(
|
53 |
+
self,
|
54 |
+
training_video: str,
|
55 |
+
training_prompt: str,
|
56 |
+
output_model_name: str,
|
57 |
+
overwrite_existing_model: bool,
|
58 |
+
validation_prompt: str,
|
59 |
+
base_model: str,
|
60 |
+
resolution_s: str,
|
61 |
+
n_steps: int,
|
62 |
+
learning_rate: float,
|
63 |
+
gradient_accumulation: int,
|
64 |
+
seed: int,
|
65 |
+
fp16: bool,
|
66 |
+
use_8bit_adam: bool,
|
67 |
+
checkpointing_steps: int,
|
68 |
+
validation_epochs: int,
|
69 |
+
upload_to_hub: bool,
|
70 |
+
use_private_repo: bool,
|
71 |
+
delete_existing_repo: bool,
|
72 |
+
upload_to: str,
|
73 |
+
remove_gpu_after_training: bool,
|
74 |
+
input_token: str,
|
75 |
+
) -> str:
|
76 |
+
if SPACE_ID == ORIGINAL_SPACE_ID:
|
77 |
+
raise gr.Error(
|
78 |
+
'This Space does not work on this Shared UI. Duplicate the Space and attribute a GPU'
|
79 |
+
)
|
80 |
+
if not torch.cuda.is_available():
|
81 |
+
raise gr.Error('CUDA is not available.')
|
82 |
+
if training_video is None:
|
83 |
+
raise gr.Error('You need to upload a video.')
|
84 |
+
if not training_prompt:
|
85 |
+
raise gr.Error('The training prompt is missing.')
|
86 |
+
if not validation_prompt:
|
87 |
+
raise gr.Error('The validation prompt is missing.')
|
88 |
+
|
89 |
+
resolution = int(resolution_s)
|
90 |
+
|
91 |
+
if not output_model_name:
|
92 |
+
timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
|
93 |
+
output_model_name = f'video-p2p-{timestamp}'
|
94 |
+
output_model_name = slugify.slugify(output_model_name)
|
95 |
+
|
96 |
+
repo_dir = pathlib.Path(__file__).parent
|
97 |
+
output_dir = repo_dir / 'experiments' / output_model_name
|
98 |
+
if overwrite_existing_model or upload_to_hub:
|
99 |
+
shutil.rmtree(output_dir, ignore_errors=True)
|
100 |
+
output_dir.mkdir(parents=True)
|
101 |
+
|
102 |
+
# if upload_to_hub:
|
103 |
+
# self.join_model_library_org(
|
104 |
+
# self.hf_token if self.hf_token else input_token)
|
105 |
+
|
106 |
+
config = OmegaConf.load('Video-P2P-Demo/configs/rabbit-jump-tune.yaml')
|
107 |
+
config.pretrained_model_path = self.download_base_model(base_model)
|
108 |
+
config.output_dir = output_dir.as_posix()
|
109 |
+
config.train_data.video_path = training_video.name # type: ignore
|
110 |
+
config.train_data.prompt = training_prompt
|
111 |
+
config.train_data.n_sample_frames = 8
|
112 |
+
config.train_data.width = resolution
|
113 |
+
config.train_data.height = resolution
|
114 |
+
config.train_data.sample_start_idx = 0
|
115 |
+
config.train_data.sample_frame_rate = 1
|
116 |
+
config.validation_data.prompts = [validation_prompt]
|
117 |
+
config.validation_data.video_length = 8
|
118 |
+
config.validation_data.width = resolution
|
119 |
+
config.validation_data.height = resolution
|
120 |
+
config.validation_data.num_inference_steps = 50
|
121 |
+
config.validation_data.guidance_scale = 7.5
|
122 |
+
config.learning_rate = learning_rate
|
123 |
+
config.gradient_accumulation_steps = gradient_accumulation
|
124 |
+
config.train_batch_size = 1
|
125 |
+
config.max_train_steps = n_steps
|
126 |
+
config.checkpointing_steps = checkpointing_steps
|
127 |
+
config.validation_steps = validation_epochs
|
128 |
+
config.seed = seed
|
129 |
+
config.mixed_precision = 'fp16' if fp16 else ''
|
130 |
+
config.use_8bit_adam = use_8bit_adam
|
131 |
+
|
132 |
+
config_path = output_dir / 'config.yaml'
|
133 |
+
with open(config_path, 'w') as f:
|
134 |
+
OmegaConf.save(config, f)
|
135 |
+
|
136 |
+
command = f'accelerate launch Video-P2P-Demo/train_tuneavideo.py --config {config_path}'
|
137 |
+
subprocess.run(shlex.split(command))
|
138 |
+
save_model_card(save_dir=output_dir,
|
139 |
+
base_model=base_model,
|
140 |
+
training_prompt=training_prompt,
|
141 |
+
test_prompt=validation_prompt,
|
142 |
+
test_image_dir='samples')
|
143 |
+
|
144 |
+
message = 'Training completed!'
|
145 |
+
print(message)
|
146 |
+
|
147 |
+
if upload_to_hub:
|
148 |
+
upload_message = self.model_uploader.upload_model(
|
149 |
+
folder_path=output_dir.as_posix(),
|
150 |
+
repo_name=output_model_name,
|
151 |
+
upload_to=upload_to,
|
152 |
+
private=use_private_repo,
|
153 |
+
delete_existing_repo=delete_existing_repo,
|
154 |
+
input_token=input_token)
|
155 |
+
print(upload_message)
|
156 |
+
message = message + '\n' + upload_message
|
157 |
+
|
158 |
+
if remove_gpu_after_training:
|
159 |
+
space_id = os.getenv('SPACE_ID')
|
160 |
+
if space_id:
|
161 |
+
api = HfApi(
|
162 |
+
token=self.hf_token if self.hf_token else input_token)
|
163 |
+
api.request_space_hardware(repo_id=space_id,
|
164 |
+
hardware='cpu-basic')
|
165 |
+
|
166 |
+
return message
|