ShaoTengLiu commited on
Commit
28662a3
·
1 Parent(s): 2d1bc13
Files changed (46) hide show
  1. .DS_Store +0 -0
  2. README.md +8 -23
  3. Video-P2P-Beta +1 -0
  4. Video-P2P/.DS_Store +0 -0
  5. Video-P2P/README.md +0 -27
  6. Video-P2P/configs/.DS_Store +0 -0
  7. Video-P2P/configs/man-motor-tune.yaml +0 -41
  8. Video-P2P/configs/man-surfing.yaml +0 -41
  9. Video-P2P/configs/rabbit-jump-p2p.yaml +0 -16
  10. Video-P2P/configs/rabbit-jump-tune.yaml +0 -41
  11. Video-P2P/data/.DS_Store +0 -0
  12. Video-P2P/data/motorbike/.DS_Store +0 -0
  13. Video-P2P/data/motorbike/1.jpg +0 -0
  14. Video-P2P/data/motorbike/2.jpg +0 -0
  15. Video-P2P/data/motorbike/3.jpg +0 -0
  16. Video-P2P/data/motorbike/4.jpg +0 -0
  17. Video-P2P/data/motorbike/5.jpg +0 -0
  18. Video-P2P/data/motorbike/6.jpg +0 -0
  19. Video-P2P/data/motorbike/7.jpg +0 -0
  20. Video-P2P/data/motorbike/8.jpg +0 -0
  21. Video-P2P/data/rabbit/1.jpg +0 -0
  22. Video-P2P/data/rabbit/2.jpg +0 -0
  23. Video-P2P/data/rabbit/3.jpg +0 -0
  24. Video-P2P/data/rabbit/4.jpg +0 -0
  25. Video-P2P/data/rabbit/5.jpg +0 -0
  26. Video-P2P/data/rabbit/6.jpg +0 -0
  27. Video-P2P/data/rabbit/7.jpg +0 -0
  28. Video-P2P/data/rabbit/8.jpg +0 -0
  29. Video-P2P/ptp_utils.py +0 -309
  30. Video-P2P/requirements.txt +0 -15
  31. Video-P2P/run_tuning.py +0 -367
  32. Video-P2P/run_videop2p.py +0 -707
  33. Video-P2P/script.sh +0 -5
  34. Video-P2P/seq_aligner.py +0 -196
  35. Video-P2P/tuneavideo/data/dataset.py +0 -57
  36. Video-P2P/tuneavideo/models/attention.py +0 -388
  37. Video-P2P/tuneavideo/models/resnet.py +0 -209
  38. Video-P2P/tuneavideo/models/unet.py +0 -450
  39. Video-P2P/tuneavideo/models/unet_blocks.py +0 -588
  40. Video-P2P/tuneavideo/pipelines/pipeline_tuneavideo.py +0 -449
  41. Video-P2P/tuneavideo/util.py +0 -84
  42. app.py +2 -2
  43. app_training.py +2 -2
  44. inference.py +1 -1
  45. requirements.txt +0 -3
  46. trainer.py +14 -14
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
README.md CHANGED
@@ -1,27 +1,12 @@
1
  ---
2
- title: Video-P2P Demo
3
- emoji: 🐶
4
- colorFrom: blue
5
- colorTo: pink
6
- sdk: gradio
7
- app_file: app.py
8
  pinned: false
 
 
9
  ---
10
 
11
- # Video-P2P
12
-
13
- ## Setup
14
-
15
- All required packages are listed in the requirements file.
16
- The code was tested on a Tesla V100 32GB but should work on other cards with at least **16GB** VRAM.
17
-
18
- ## Quickstart
19
-
20
- ``` bash
21
- bash script.sh
22
- ```
23
-
24
- ## References
25
- * prompt-to-prompt: https://github.com/google/prompt-to-prompt
26
- * Tune-A-Video: https://github.com/showlab/Tune-A-Video
27
- * diffusers: https://github.com/huggingface/diffusers
 
1
  ---
2
+ title: Tune-A-Video Training UI
3
+ emoji:
4
+ colorFrom: red
5
+ colorTo: purple
6
+ sdk: docker
 
7
  pinned: false
8
+ license: mit
9
+ duplicated_from: lora-library/LoRA-DreamBooth-Training-UI
10
  ---
11
 
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P-Beta ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 7a8fa7a8b8d81bbba367865f47b7894cdc4efafb
Video-P2P/.DS_Store DELETED
Binary file (6.15 kB)
 
Video-P2P/README.md DELETED
@@ -1,27 +0,0 @@
1
- ---
2
- title: Video-P2P Demo
3
- emoji: 🐶
4
- colorFrom: blue
5
- colorTo: pink
6
- sdk: gradio
7
- app_file: app.py
8
- pinned: false
9
- ---
10
-
11
- # Video-P2P
12
-
13
- ## Setup
14
-
15
- All required packages are listed in the requirements file.
16
- The code was tested on a Tesla V100 32GB but should work on other cards with at least **16GB** VRAM.
17
-
18
- ## Quickstart
19
-
20
- ``` bash
21
- bash script.sh
22
- ```
23
-
24
- ## References
25
- * prompt-to-prompt: https://github.com/google/prompt-to-prompt
26
- * Tune-A-Video: https://github.com/showlab/Tune-A-Video
27
- * diffusers: https://github.com/huggingface/diffusers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/configs/.DS_Store DELETED
Binary file (6.15 kB)
 
Video-P2P/configs/man-motor-tune.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
2
- output_dir: "./outputs/man-motor"
3
-
4
- train_data:
5
- video_path: "./data/motorbike"
6
- prompt: "a man is driving a motorbike in the forest"
7
- n_sample_frames: 8
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 1
12
-
13
- validation_data:
14
- prompts:
15
- - "a man is driving a motorbike in the forest"
16
- - "a Spider-Man is driving a motorbike in the forest"
17
- - "a Bat-Man is driving a motorbike in the forest"
18
- - "an Iron-Man is driving a motorbike in the forest"
19
- video_length: 8
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/configs/man-surfing.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/man-surfing"
3
-
4
- train_data:
5
- video_path: "data/man-surfing.mp4"
6
- prompt: "a man is surfing"
7
- n_sample_frames: 24
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 1
12
-
13
- validation_data:
14
- prompts:
15
- - "a panda is surfing"
16
- - "a boy, wearing a birthday hat, is surfing"
17
- - "a raccoon is surfing, cartoon style"
18
- - "Iron Man is surfing in the desert"
19
- video_length: 24
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/configs/rabbit-jump-p2p.yaml DELETED
@@ -1,16 +0,0 @@
1
- pretrained_model_path: "./outputs/rabbit-jump"
2
- image_path: "./data/rabbit"
3
- prompt: "a rabbit is jumping on the grass"
4
- prompts:
5
- - "a rabbit is jumping on the grass"
6
- - "a origami rabbit is jumping on the grass"
7
- blend_word:
8
- - 'rabbit'
9
- - 'rabbit'
10
- eq_params:
11
- words: "origami"
12
- values: 2
13
- gif_folder: "./outputs/rabbit-jump/results"
14
- gif_name_1: "./outputs/rabbit-jump/results/original_name.gif"
15
- gif_name_2: "./outputs/rabbit-jump/results/origami_name.gif"
16
- IRC: False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/configs/rabbit-jump-tune.yaml DELETED
@@ -1,41 +0,0 @@
1
- pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
2
- output_dir: "./outputs/rabbit-jump"
3
-
4
- train_data:
5
- video_path: "./data/rabbit"
6
- prompt: "a rabbit is jumping on the grass"
7
- n_sample_frames: 8
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 1
12
-
13
- validation_data:
14
- prompts:
15
- - "a rabbit is jumping on the grass"
16
- - "a Lego rabbit is jumping on the grass"
17
- - "a origami rabbit is jumping on the grass"
18
- - "a crochet rabbit is jumping on the grass"
19
- video_length: 8
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 12.5
24
- use_inv_latent: True
25
- num_inv_steps: 50
26
-
27
- learning_rate: 3e-5
28
- train_batch_size: 1
29
- max_train_steps: 500
30
- checkpointing_steps: 1000
31
- validation_steps: 100
32
- trainable_modules:
33
- - "attn1.to_q"
34
- - "attn2.to_q"
35
- - "attn_temp"
36
-
37
- seed: 33
38
- mixed_precision: fp16
39
- use_8bit_adam: False
40
- gradient_checkpointing: True
41
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/data/.DS_Store DELETED
Binary file (10.2 kB)
 
Video-P2P/data/motorbike/.DS_Store DELETED
Binary file (6.15 kB)
 
Video-P2P/data/motorbike/1.jpg DELETED
Binary file (925 kB)
 
Video-P2P/data/motorbike/2.jpg DELETED
Binary file (925 kB)
 
Video-P2P/data/motorbike/3.jpg DELETED
Binary file (925 kB)
 
Video-P2P/data/motorbike/4.jpg DELETED
Binary file (925 kB)
 
Video-P2P/data/motorbike/5.jpg DELETED
Binary file (925 kB)
 
Video-P2P/data/motorbike/6.jpg DELETED
Binary file (925 kB)
 
Video-P2P/data/motorbike/7.jpg DELETED
Binary file (925 kB)
 
Video-P2P/data/motorbike/8.jpg DELETED
Binary file (925 kB)
 
Video-P2P/data/rabbit/1.jpg DELETED
Binary file (351 kB)
 
Video-P2P/data/rabbit/2.jpg DELETED
Binary file (351 kB)
 
Video-P2P/data/rabbit/3.jpg DELETED
Binary file (351 kB)
 
Video-P2P/data/rabbit/4.jpg DELETED
Binary file (351 kB)
 
Video-P2P/data/rabbit/5.jpg DELETED
Binary file (351 kB)
 
Video-P2P/data/rabbit/6.jpg DELETED
Binary file (351 kB)
 
Video-P2P/data/rabbit/7.jpg DELETED
Binary file (351 kB)
 
Video-P2P/data/rabbit/8.jpg DELETED
Binary file (351 kB)
 
Video-P2P/ptp_utils.py DELETED
@@ -1,309 +0,0 @@
1
- # Copyright 2022 Google LLC
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import numpy as np
16
- import torch
17
- from PIL import Image, ImageDraw, ImageFont
18
- import cv2
19
- from typing import Optional, Union, Tuple, List, Callable, Dict
20
- from IPython.display import display
21
- from tqdm.notebook import tqdm
22
-
23
-
24
- def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
25
- h, w, c = image.shape
26
- offset = int(h * .2)
27
- img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
28
- font = cv2.FONT_HERSHEY_SIMPLEX
29
- img[:h] = image
30
- textsize = cv2.getTextSize(text, font, 1, 2)[0]
31
- text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
32
- cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
33
- return img
34
-
35
-
36
- def view_images(images, num_rows=1, offset_ratio=0.02):
37
- if type(images) is list:
38
- num_empty = len(images) % num_rows
39
- elif images.ndim == 4:
40
- num_empty = images.shape[0] % num_rows
41
- else:
42
- images = [images]
43
- num_empty = 0
44
-
45
- empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
46
- images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
47
- num_items = len(images)
48
-
49
- h, w, c = images[0].shape
50
- offset = int(h * offset_ratio)
51
- num_cols = num_items // num_rows
52
- image_ = np.ones((h * num_rows + offset * (num_rows - 1),
53
- w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
54
- for i in range(num_rows):
55
- for j in range(num_cols):
56
- image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
57
- i * num_cols + j]
58
-
59
- pil_img = Image.fromarray(image_)
60
- display(pil_img)
61
-
62
-
63
- def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False, simple=False):
64
- if low_resource:
65
- noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
66
- noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
67
- else:
68
- latents_input = torch.cat([latents] * 2)
69
- noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
70
- noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
71
- noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
72
- if simple:
73
- noise_pred[0] = noise_prediction_text[0]
74
- latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
75
- # first latents: torch.Size([1, 4, 4, 64, 64])
76
- latents = controller.step_callback(latents)
77
- return latents
78
-
79
-
80
- def latent2image(vae, latents):
81
- latents = 1 / 0.18215 * latents
82
- image = vae.decode(latents)['sample']
83
- image = (image / 2 + 0.5).clamp(0, 1)
84
- image = image.cpu().permute(0, 2, 3, 1).numpy()
85
- image = (image * 255).astype(np.uint8)
86
- return image
87
-
88
-
89
- @torch.no_grad()
90
- def latent2image_video(vae, latents):
91
- latents = 1 / 0.18215 * latents
92
- latents = latents[0].permute(1, 0, 2, 3)
93
- image = vae.decode(latents)['sample']
94
- image = (image / 2 + 0.5).clamp(0, 1)
95
- image = image.cpu().permute(0, 2, 3, 1).numpy()
96
- image = (image * 255).astype(np.uint8)
97
- return image
98
-
99
-
100
- def init_latent(latent, model, height, width, generator, batch_size):
101
- if latent is None:
102
- latent = torch.randn(
103
- (1, model.unet.in_channels, height // 8, width // 8),
104
- generator=generator,
105
- )
106
- latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
107
- return latent, latents
108
-
109
-
110
- @torch.no_grad()
111
- def text2image_ldm(
112
- model,
113
- prompt: List[str],
114
- controller,
115
- num_inference_steps: int = 50,
116
- guidance_scale: Optional[float] = 7.,
117
- generator: Optional[torch.Generator] = None,
118
- latent: Optional[torch.FloatTensor] = None,
119
- ):
120
- register_attention_control(model, controller)
121
- height = width = 256
122
- batch_size = len(prompt)
123
-
124
- uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
125
- uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
126
-
127
- text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
128
- text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
129
- latent, latents = init_latent(latent, model, height, width, generator, batch_size)
130
- context = torch.cat([uncond_embeddings, text_embeddings])
131
-
132
- model.scheduler.set_timesteps(num_inference_steps)
133
- for t in tqdm(model.scheduler.timesteps):
134
- latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
135
-
136
- image = latent2image(model.vqvae, latents)
137
-
138
- return image, latent
139
-
140
-
141
- @torch.no_grad()
142
- def text2image_ldm_stable(
143
- model,
144
- prompt: List[str],
145
- controller,
146
- num_inference_steps: int = 50,
147
- guidance_scale: float = 7.5,
148
- generator: Optional[torch.Generator] = None,
149
- latent: Optional[torch.FloatTensor] = None,
150
- low_resource: bool = False,
151
- ):
152
- register_attention_control(model, controller)
153
- height = width = 512
154
- batch_size = len(prompt)
155
-
156
- text_input = model.tokenizer(
157
- prompt,
158
- padding="max_length",
159
- max_length=model.tokenizer.model_max_length,
160
- truncation=True,
161
- return_tensors="pt",
162
- )
163
- text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
164
- max_length = text_input.input_ids.shape[-1]
165
- uncond_input = model.tokenizer(
166
- [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
167
- )
168
- uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
169
-
170
- context = [uncond_embeddings, text_embeddings]
171
- if not low_resource:
172
- context = torch.cat(context)
173
-
174
- latent, latents = init_latent(latent, model, height, width, generator, batch_size)
175
-
176
- # set timesteps
177
- extra_set_kwargs = {"offset": 1}
178
- model.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
179
- for t in tqdm(model.scheduler.timesteps):
180
- latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
181
-
182
- image = latent2image(model.vae, latents)
183
-
184
- return image, latent
185
-
186
-
187
- def register_attention_control(model, controller):
188
- def ca_forward(self, place_in_unet):
189
- to_out = self.to_out
190
- if type(to_out) is torch.nn.modules.container.ModuleList:
191
- to_out = self.to_out[0]
192
- else:
193
- to_out = self.to_out
194
-
195
- def forward(x, encoder_hidden_states=None, attention_mask=None):
196
- context = encoder_hidden_states
197
- mask = attention_mask
198
- batch_size, sequence_length, dim = x.shape
199
- h = self.heads
200
- q = self.to_q(x)
201
- is_cross = context is not None
202
- context = context if is_cross else x
203
- k = self.to_k(context)
204
- v = self.to_v(context)
205
- q = self.reshape_heads_to_batch_dim(q)
206
- k = self.reshape_heads_to_batch_dim(k)
207
- v = self.reshape_heads_to_batch_dim(v)
208
- sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale # q: torch.Size([128, 4096, 40]); k: torch.Size([64, 77, 40])
209
-
210
- if mask is not None:
211
- mask = mask.reshape(batch_size, -1)
212
- max_neg_value = -torch.finfo(sim.dtype).max
213
- mask = mask[:, None, :].repeat(h, 1, 1)
214
- sim.masked_fill_(~mask, max_neg_value)
215
-
216
- attn = torch.exp(sim-torch.max(sim)) / torch.sum(torch.exp(sim-torch.max(sim)), axis=-1).unsqueeze(-1)
217
- attn = controller(attn, is_cross, place_in_unet)
218
- out = torch.einsum("b i j, b j d -> b i d", attn, v)
219
- out = self.reshape_batch_dim_to_heads(out)
220
- return to_out(out)
221
-
222
- return forward
223
-
224
- class DummyController:
225
-
226
- def __call__(self, *args):
227
- return args[0]
228
-
229
- def __init__(self):
230
- self.num_att_layers = 0
231
-
232
- if controller is None:
233
- controller = DummyController()
234
-
235
- def register_recr(net_, count, place_in_unet):
236
- if net_.__class__.__name__ == 'CrossAttention':
237
- net_.forward = ca_forward(net_, place_in_unet)
238
- return count + 1
239
- elif hasattr(net_, 'children'):
240
- for net__ in net_.children():
241
- count = register_recr(net__, count, place_in_unet)
242
- return count
243
-
244
- cross_att_count = 0
245
- sub_nets = model.unet.named_children()
246
- for net in sub_nets:
247
- if "down" in net[0]:
248
- cross_att_count += register_recr(net[1], 0, "down")
249
- elif "up" in net[0]:
250
- cross_att_count += register_recr(net[1], 0, "up")
251
- elif "mid" in net[0]:
252
- cross_att_count += register_recr(net[1], 0, "mid")
253
-
254
- controller.num_att_layers = cross_att_count
255
-
256
-
257
- def get_word_inds(text: str, word_place: int, tokenizer):
258
- split_text = text.split(" ")
259
- if type(word_place) is str:
260
- word_place = [i for i, word in enumerate(split_text) if word_place == word]
261
- elif type(word_place) is int:
262
- word_place = [word_place]
263
- out = []
264
- if len(word_place) > 0:
265
- words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
266
- cur_len, ptr = 0, 0
267
-
268
- for i in range(len(words_encode)):
269
- cur_len += len(words_encode[i])
270
- if ptr in word_place:
271
- out.append(i + 1)
272
- if cur_len >= len(split_text[ptr]):
273
- ptr += 1
274
- cur_len = 0
275
- return np.array(out)
276
-
277
-
278
- def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
279
- word_inds: Optional[torch.Tensor]=None):
280
- if type(bounds) is float:
281
- bounds = 0, bounds
282
- start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
283
- if word_inds is None:
284
- word_inds = torch.arange(alpha.shape[2])
285
- alpha[: start, prompt_ind, word_inds] = 0
286
- alpha[start: end, prompt_ind, word_inds] = 1
287
- alpha[end:, prompt_ind, word_inds] = 0
288
- return alpha
289
-
290
-
291
- def get_time_words_attention_alpha(prompts, num_steps,
292
- cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
293
- tokenizer, max_num_words=77):
294
- if type(cross_replace_steps) is not dict:
295
- cross_replace_steps = {"default_": cross_replace_steps}
296
- if "default_" not in cross_replace_steps:
297
- cross_replace_steps["default_"] = (0., 1.)
298
- alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
299
- for i in range(len(prompts) - 1): # 2
300
- alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], # {'default_': 0.8}
301
- i)
302
- for key, item in cross_replace_steps.items():
303
- if key != "default_":
304
- inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
305
- for i, ind in enumerate(inds):
306
- if len(ind) > 0:
307
- alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
308
- alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
309
- return alpha_time_words
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/requirements.txt DELETED
@@ -1,15 +0,0 @@
1
- torch==1.12.1
2
- torchvision==0.13.1
3
- diffusers[torch]==0.11.1
4
- transformers>=4.25.1
5
- bitsandbytes==0.35.4
6
- decord==0.6.0
7
- accelerate
8
- tensorboard
9
- modelcards
10
- omegaconf
11
- einops
12
- imageio
13
- ftfy
14
- opencv-python
15
- ipywidgets
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/run_tuning.py DELETED
@@ -1,367 +0,0 @@
1
- import argparse
2
- import datetime
3
- import logging
4
- import inspect
5
- import math
6
- import os
7
- from typing import Dict, Optional, Tuple
8
- from omegaconf import OmegaConf
9
-
10
- import torch
11
- import torch.nn.functional as F
12
- import torch.utils.checkpoint
13
-
14
- import diffusers
15
- import transformers
16
- from accelerate import Accelerator
17
- from accelerate.logging import get_logger
18
- from accelerate.utils import set_seed
19
- from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
20
- from diffusers.optimization import get_scheduler
21
- from diffusers.utils import check_min_version
22
- from diffusers.utils.import_utils import is_xformers_available
23
- from tqdm.auto import tqdm
24
- from transformers import CLIPTextModel, CLIPTokenizer
25
-
26
- from tuneavideo.models.unet import UNet3DConditionModel
27
- from tuneavideo.data.dataset import TuneAVideoDataset
28
- from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
29
- from tuneavideo.util import save_videos_grid, ddim_inversion
30
- from einops import rearrange
31
-
32
-
33
- # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
34
- check_min_version("0.10.0.dev0")
35
-
36
- logger = get_logger(__name__, log_level="INFO")
37
-
38
-
39
- def main(
40
- pretrained_model_path: str,
41
- output_dir: str,
42
- train_data: Dict,
43
- validation_data: Dict,
44
- validation_steps: int = 100,
45
- trainable_modules: Tuple[str] = (
46
- "attn1.to_q",
47
- "attn2.to_q",
48
- "attn_temp",
49
- ),
50
- train_batch_size: int = 1,
51
- max_train_steps: int = 500,
52
- learning_rate: float = 3e-5,
53
- scale_lr: bool = False,
54
- lr_scheduler: str = "constant",
55
- lr_warmup_steps: int = 0,
56
- adam_beta1: float = 0.9,
57
- adam_beta2: float = 0.999,
58
- adam_weight_decay: float = 1e-2,
59
- adam_epsilon: float = 1e-08,
60
- max_grad_norm: float = 1.0,
61
- gradient_accumulation_steps: int = 1,
62
- gradient_checkpointing: bool = True,
63
- checkpointing_steps: int = 500,
64
- resume_from_checkpoint: Optional[str] = None,
65
- mixed_precision: Optional[str] = "fp16",
66
- use_8bit_adam: bool = False,
67
- enable_xformers_memory_efficient_attention: bool = True,
68
- seed: Optional[int] = None,
69
- ):
70
- *_, config = inspect.getargvalues(inspect.currentframe())
71
-
72
- accelerator = Accelerator(
73
- gradient_accumulation_steps=gradient_accumulation_steps,
74
- mixed_precision=mixed_precision,
75
- )
76
-
77
- # Make one log on every process with the configuration for debugging.
78
- logging.basicConfig(
79
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
80
- datefmt="%m/%d/%Y %H:%M:%S",
81
- level=logging.INFO,
82
- )
83
- logger.info(accelerator.state, main_process_only=False)
84
- if accelerator.is_local_main_process:
85
- transformers.utils.logging.set_verbosity_warning()
86
- diffusers.utils.logging.set_verbosity_info()
87
- else:
88
- transformers.utils.logging.set_verbosity_error()
89
- diffusers.utils.logging.set_verbosity_error()
90
-
91
- # If passed along, set the training seed now.
92
- if seed is not None:
93
- set_seed(seed)
94
-
95
- # Handle the output folder creation
96
- if accelerator.is_main_process:
97
- # now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
98
- # output_dir = os.path.join(output_dir, now)
99
- os.makedirs(output_dir, exist_ok=True)
100
- os.makedirs(f"{output_dir}/samples", exist_ok=True)
101
- os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
102
- OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
103
-
104
- # Load scheduler, tokenizer and models.
105
- noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
106
- tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
107
- text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
108
- vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
109
- unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
110
-
111
- # Freeze vae and text_encoder
112
- vae.requires_grad_(False)
113
- text_encoder.requires_grad_(False)
114
-
115
- unet.requires_grad_(False)
116
- for name, module in unet.named_modules():
117
- if name.endswith(tuple(trainable_modules)):
118
- for params in module.parameters():
119
- params.requires_grad = True
120
-
121
- if enable_xformers_memory_efficient_attention:
122
- if is_xformers_available():
123
- unet.enable_xformers_memory_efficient_attention()
124
- else:
125
- raise ValueError("xformers is not available. Make sure it is installed correctly")
126
-
127
- if gradient_checkpointing:
128
- unet.enable_gradient_checkpointing()
129
-
130
- if scale_lr:
131
- learning_rate = (
132
- learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
133
- )
134
-
135
- # Initialize the optimizer
136
- if use_8bit_adam:
137
- try:
138
- import bitsandbytes as bnb
139
- except ImportError:
140
- raise ImportError(
141
- "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
142
- )
143
-
144
- optimizer_cls = bnb.optim.AdamW8bit
145
- else:
146
- optimizer_cls = torch.optim.AdamW
147
-
148
- optimizer = optimizer_cls(
149
- unet.parameters(),
150
- lr=learning_rate,
151
- betas=(adam_beta1, adam_beta2),
152
- weight_decay=adam_weight_decay,
153
- eps=adam_epsilon,
154
- )
155
-
156
- # Get the training dataset
157
- train_dataset = TuneAVideoDataset(**train_data)
158
-
159
- # Preprocessing the dataset
160
- train_dataset.prompt_ids = tokenizer(
161
- train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
162
- ).input_ids[0]
163
-
164
- # DataLoaders creation:
165
- train_dataloader = torch.utils.data.DataLoader(
166
- train_dataset, batch_size=train_batch_size
167
- )
168
-
169
- # Get the validation pipeline
170
- validation_pipeline = TuneAVideoPipeline(
171
- vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
172
- scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
173
- )
174
- validation_pipeline.enable_vae_slicing()
175
- ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
176
- ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
177
-
178
- # Scheduler
179
- lr_scheduler = get_scheduler(
180
- lr_scheduler,
181
- optimizer=optimizer,
182
- num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
183
- num_training_steps=max_train_steps * gradient_accumulation_steps,
184
- )
185
-
186
- # Prepare everything with our `accelerator`.
187
- unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
188
- unet, optimizer, train_dataloader, lr_scheduler
189
- )
190
-
191
- # For mixed precision training we cast the text_encoder and vae weights to half-precision
192
- # as these models are only used for inference, keeping weights in full precision is not required.
193
- weight_dtype = torch.float32
194
- if accelerator.mixed_precision == "fp16":
195
- weight_dtype = torch.float16
196
- elif accelerator.mixed_precision == "bf16":
197
- weight_dtype = torch.bfloat16
198
-
199
- # Move text_encode and vae to gpu and cast to weight_dtype
200
- text_encoder.to(accelerator.device, dtype=weight_dtype)
201
- vae.to(accelerator.device, dtype=weight_dtype)
202
-
203
- # We need to recalculate our total training steps as the size of the training dataloader may have changed.
204
- num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
205
- # Afterwards we recalculate our number of training epochs
206
- num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
207
-
208
- # We need to initialize the trackers we use, and also store our configuration.
209
- # The trackers initializes automatically on the main process.
210
- if accelerator.is_main_process:
211
- accelerator.init_trackers("text2video-fine-tune")
212
-
213
- # Train!
214
- total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
215
-
216
- logger.info("***** Running training *****")
217
- logger.info(f" Num examples = {len(train_dataset)}")
218
- logger.info(f" Num Epochs = {num_train_epochs}")
219
- logger.info(f" Instantaneous batch size per device = {train_batch_size}")
220
- logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
221
- logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
222
- logger.info(f" Total optimization steps = {max_train_steps}")
223
- global_step = 0
224
- first_epoch = 0
225
-
226
- # Potentially load in the weights and states from a previous save
227
- if resume_from_checkpoint:
228
- if resume_from_checkpoint != "latest":
229
- path = os.path.basename(resume_from_checkpoint)
230
- else:
231
- # Get the most recent checkpoint
232
- dirs = os.listdir(output_dir)
233
- dirs = [d for d in dirs if d.startswith("checkpoint")]
234
- dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
235
- path = dirs[-1]
236
- accelerator.print(f"Resuming from checkpoint {path}")
237
- accelerator.load_state(os.path.join(output_dir, path))
238
- global_step = int(path.split("-")[1])
239
-
240
- first_epoch = global_step // num_update_steps_per_epoch
241
- resume_step = global_step % num_update_steps_per_epoch
242
-
243
- # Only show the progress bar once on each machine.
244
- progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
245
- progress_bar.set_description("Steps")
246
-
247
- for epoch in range(first_epoch, num_train_epochs):
248
- unet.train()
249
- train_loss = 0.0
250
- for step, batch in enumerate(train_dataloader):
251
- # Skip steps until we reach the resumed step
252
- if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
253
- if step % gradient_accumulation_steps == 0:
254
- progress_bar.update(1)
255
- continue
256
-
257
- with accelerator.accumulate(unet):
258
- # Convert videos to latent space
259
- pixel_values = batch["pixel_values"].to(weight_dtype)
260
- video_length = pixel_values.shape[1]
261
- pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
262
- latents = vae.encode(pixel_values).latent_dist.sample()
263
- latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
264
- latents = latents * 0.18215
265
-
266
- # Sample noise that we'll add to the latents
267
- noise = torch.randn_like(latents)
268
- bsz = latents.shape[0]
269
- # Sample a random timestep for each video
270
- timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
271
- timesteps = timesteps.long()
272
-
273
- # Add noise to the latents according to the noise magnitude at each timestep
274
- # (this is the forward diffusion process)
275
- noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
276
-
277
- # Get the text embedding for conditioning
278
- encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
279
-
280
- # Get the target for loss depending on the prediction type
281
- if noise_scheduler.prediction_type == "epsilon":
282
- target = noise
283
- elif noise_scheduler.prediction_type == "v_prediction":
284
- target = noise_scheduler.get_velocity(latents, noise, timesteps)
285
- else:
286
- raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
287
-
288
- # Predict the noise residual and compute loss
289
- model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
290
- loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
291
-
292
- # Gather the losses across all processes for logging (if we use distributed training).
293
- avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
294
- train_loss += avg_loss.item() / gradient_accumulation_steps
295
-
296
- # Backpropagate
297
- accelerator.backward(loss)
298
- if accelerator.sync_gradients:
299
- accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
300
- optimizer.step()
301
- lr_scheduler.step()
302
- optimizer.zero_grad()
303
-
304
- # Checks if the accelerator has performed an optimization step behind the scenes
305
- if accelerator.sync_gradients:
306
- progress_bar.update(1)
307
- global_step += 1
308
- accelerator.log({"train_loss": train_loss}, step=global_step)
309
- train_loss = 0.0
310
-
311
- if global_step % checkpointing_steps == 0:
312
- if accelerator.is_main_process:
313
- save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
314
- accelerator.save_state(save_path)
315
- logger.info(f"Saved state to {save_path}")
316
-
317
- if global_step % validation_steps == 0:
318
- if accelerator.is_main_process:
319
- samples = []
320
- generator = torch.Generator(device=latents.device)
321
- generator.manual_seed(seed)
322
-
323
- ddim_inv_latent = None
324
- if validation_data.use_inv_latent:
325
- inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt")
326
- ddim_inv_latent = ddim_inversion(
327
- validation_pipeline, ddim_inv_scheduler, video_latent=latents,
328
- num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype)
329
- torch.save(ddim_inv_latent, inv_latents_path)
330
-
331
- for idx, prompt in enumerate(validation_data.prompts):
332
- sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent,
333
- **validation_data).videos
334
- save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{prompt}.gif")
335
- samples.append(sample)
336
- samples = torch.concat(samples)
337
- save_path = f"{output_dir}/samples/sample-{global_step}.gif"
338
- save_videos_grid(samples, save_path)
339
- logger.info(f"Saved samples to {save_path}")
340
-
341
- logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
342
- progress_bar.set_postfix(**logs)
343
-
344
- if global_step >= max_train_steps:
345
- break
346
-
347
- # Create the pipeline using the trained modules and save it.
348
- accelerator.wait_for_everyone()
349
- if accelerator.is_main_process:
350
- unet = accelerator.unwrap_model(unet)
351
- pipeline = TuneAVideoPipeline.from_pretrained(
352
- pretrained_model_path,
353
- text_encoder=text_encoder,
354
- vae=vae,
355
- unet=unet,
356
- )
357
- pipeline.save_pretrained(output_dir)
358
-
359
- accelerator.end_training()
360
-
361
-
362
- if __name__ == "__main__":
363
- parser = argparse.ArgumentParser()
364
- parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
365
- args = parser.parse_args()
366
-
367
- main(**OmegaConf.load(args.config))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/run_videop2p.py DELETED
@@ -1,707 +0,0 @@
1
- import os
2
- from typing import Optional, Union, Tuple, List, Callable, Dict
3
- from tqdm.notebook import tqdm
4
- import torch
5
- from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
6
- import torch.nn.functional as nnf
7
- import numpy as np
8
- import abc
9
- import ptp_utils
10
- import seq_aligner
11
- import shutil
12
- from torch.optim.adam import Adam
13
- from PIL import Image
14
- from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer
15
- from einops import rearrange
16
-
17
- from tuneavideo.models.unet import UNet3DConditionModel
18
- from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
19
-
20
- import cv2
21
- import argparse
22
- from omegaconf import OmegaConf
23
-
24
- scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
25
- MY_TOKEN = ''
26
- LOW_RESOURCE = False
27
- NUM_DDIM_STEPS = 50
28
- GUIDANCE_SCALE = 7.5
29
- MAX_NUM_WORDS = 77
30
- device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
31
- IRC = True
32
-
33
- # need to adjust
34
- cross_replace_steps = {'default_': .2,}
35
- self_replace_steps = .5
36
- mask_th = (.3, .3)
37
- video_len = 8
38
-
39
- def main(
40
- pretrained_model_path: str,
41
- image_path: str,
42
- prompt: str,
43
- prompts: Tuple[str],
44
- blend_word: Tuple[str],
45
- eq_params: Dict,
46
- gif_folder: str,
47
- gif_name_1: str,
48
- gif_name_2: str,
49
- IRC: bool,
50
- ):
51
- blend_word = (((blend_word[0],), (blend_word[1],)))
52
- eq_params["words"] = (eq_params["words"],)
53
- eq_params["values"] = (eq_params["values"],)
54
- eq_params = dict(eq_params)
55
- prompts = list(prompts)
56
- if not os.path.exists(gif_folder):
57
- os.makedirs(gif_folder)
58
-
59
- # Load the tokenizer
60
- tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
61
- # Load models and create wrapper for stable diffusion
62
- text_encoder = CLIPTextModel.from_pretrained(
63
- pretrained_model_path,
64
- subfolder="text_encoder",
65
- )
66
- vae = AutoencoderKL.from_pretrained(
67
- pretrained_model_path,
68
- subfolder="vae",
69
- )
70
- unet = UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")
71
- ldm_stable = TuneAVideoPipeline(
72
- vae=vae,
73
- text_encoder=text_encoder,
74
- tokenizer=tokenizer,
75
- unet=unet,
76
- scheduler=scheduler,
77
- ).to(device)
78
-
79
- try:
80
- ldm_stable.disable_xformers_memory_efficient_attention()
81
- except AttributeError:
82
- print("Attribute disable_xformers_memory_efficient_attention() is missing")
83
- tokenizer = ldm_stable.tokenizer # Tokenizer of class: [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
84
- # A tokenizer breaks a stream of text into tokens, usually by looking for whitespace (tabs, spaces, new lines).
85
-
86
- class LocalBlend:
87
-
88
- def get_mask(self, maps, alpha, use_pool): # alpha is a word map
89
- k = 1
90
- maps = (maps * alpha).sum(-1).mean(2) # [2, 80, 1, 16, 16, 77], [2, 1, 1, 1, 1, 77]
91
- if use_pool:
92
- maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
93
- mask = nnf.interpolate(maps, size=(x_t.shape[3:]))
94
- mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
95
- mask = mask.gt(self.th[1-int(use_pool)])
96
- mask = mask[:1] + mask
97
- return mask
98
-
99
- def __call__(self, x_t, attention_store, step):
100
- self.counter += 1
101
- if self.counter > self.start_blend:
102
- # attention_store["down_cross"]: 4, attention_store["up_cross"]:6, attention_store["down_cross"][0]: torch.Size([32, 1024, 77])
103
- maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
104
- # maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
105
- maps = [item.reshape(self.alpha_layers.shape[0], -1, 8, 16, 16, MAX_NUM_WORDS) for item in maps]
106
- maps = torch.cat(maps, dim=2)
107
- # self.alpha_layers: torch.Size([2, 1, 1, 1, 1, 77])
108
- mask = self.get_mask(maps, self.alpha_layers, True)
109
- if self.substruct_layers is not None:
110
- maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
111
- mask = mask * maps_sub
112
- mask = mask.float()
113
- mask = mask.reshape(-1, 1, mask.shape[-3], mask.shape[-2], mask.shape[-1])
114
-
115
- x_t = x_t[:1] + mask * (x_t - x_t[:1]) # line13 algorithm
116
- return x_t
117
-
118
- def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
119
- alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
120
- for i, (prompt, words_) in enumerate(zip(prompts, words)):
121
- if type(words_) is str:
122
- words_ = [words_]
123
- for word in words_:
124
- ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
125
- alpha_layers[i, :, :, :, :, ind] = 1
126
-
127
- if substruct_words is not None:
128
- substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
129
- for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
130
- if type(words_) is str:
131
- words_ = [words_]
132
- for word in words_:
133
- ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
134
- substruct_layers[i, :, :, :, :, ind] = 1
135
- self.substruct_layers = substruct_layers.to(device)
136
- else:
137
- self.substruct_layers = None
138
- self.alpha_layers = alpha_layers.to(device)
139
- self.start_blend = int(start_blend * NUM_DDIM_STEPS)
140
- self.counter = 0
141
- self.th=th
142
-
143
-
144
-
145
-
146
- class EmptyControl:
147
-
148
-
149
- def step_callback(self, x_t):
150
- return x_t
151
-
152
- def between_steps(self):
153
- return
154
-
155
- def __call__(self, attn, is_cross: bool, place_in_unet: str):
156
- return attn
157
-
158
-
159
- class AttentionControl(abc.ABC):
160
-
161
- def step_callback(self, x_t):
162
- return x_t
163
-
164
- def between_steps(self):
165
- return
166
-
167
- @property
168
- def num_uncond_att_layers(self):
169
- return self.num_att_layers if LOW_RESOURCE else 0
170
-
171
- @abc.abstractmethod
172
- def forward (self, attn, is_cross: bool, place_in_unet: str):
173
- raise NotImplementedError
174
-
175
- def __call__(self, attn, is_cross: bool, place_in_unet: str):
176
- if self.cur_att_layer >= self.num_uncond_att_layers:
177
- if LOW_RESOURCE:
178
- attn = self.forward(attn, is_cross, place_in_unet)
179
- else:
180
- h = attn.shape[0]
181
- attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
182
- self.cur_att_layer += 1
183
- if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
184
- self.cur_att_layer = 0
185
- self.cur_step += 1
186
- self.between_steps()
187
- return attn
188
-
189
- def reset(self):
190
- self.cur_step = 0
191
- self.cur_att_layer = 0
192
-
193
- def __init__(self):
194
- self.cur_step = 0
195
- self.num_att_layers = -1
196
- self.cur_att_layer = 0
197
-
198
- class SpatialReplace(EmptyControl):
199
-
200
- def step_callback(self, x_t):
201
- if self.cur_step < self.stop_inject:
202
- b = x_t.shape[0]
203
- x_t = x_t[:1].expand(b, *x_t.shape[1:])
204
- return x_t
205
-
206
- def __init__(self, stop_inject: float):
207
- super(SpatialReplace, self).__init__()
208
- self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
209
-
210
-
211
- class AttentionStore(AttentionControl):
212
-
213
- @staticmethod
214
- def get_empty_store():
215
- return {"down_cross": [], "mid_cross": [], "up_cross": [],
216
- "down_self": [], "mid_self": [], "up_self": []}
217
-
218
- def forward(self, attn, is_cross: bool, place_in_unet: str):
219
- key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
220
- if attn.shape[1] <= 32 ** 2: # avoid memory overhead
221
- self.step_store[key].append(attn) # 'down_self' torch.Size([32768, 8, 8])
222
- return attn
223
-
224
- def between_steps(self):
225
- if len(self.attention_store) == 0:
226
- self.attention_store = self.step_store
227
- else:
228
- for key in self.attention_store:
229
- for i in range(len(self.attention_store[key])):
230
- self.attention_store[key][i] += self.step_store[key][i]
231
- self.step_store = self.get_empty_store()
232
-
233
- def get_average_attention(self):
234
- average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
235
- return average_attention
236
-
237
-
238
- def reset(self):
239
- super(AttentionStore, self).reset()
240
- self.step_store = self.get_empty_store()
241
- self.attention_store = {}
242
-
243
- def __init__(self):
244
- super(AttentionStore, self).__init__()
245
- self.step_store = self.get_empty_store()
246
- self.attention_store = {}
247
-
248
-
249
- class AttentionControlEdit(AttentionStore, abc.ABC):
250
-
251
- def step_callback(self, x_t):
252
- if self.local_blend is not None:
253
- x_t = self.local_blend(x_t, self.attention_store, self.cur_step)
254
- return x_t
255
-
256
- def replace_self_attention(self, attn_base, att_replace, place_in_unet):
257
- if att_replace.shape[2] <= 32 ** 2:
258
- attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
259
- return attn_base
260
- else:
261
- return att_replace
262
-
263
- @abc.abstractmethod
264
- def replace_cross_attention(self, attn_base, att_replace):
265
- raise NotImplementedError
266
-
267
- def forward(self, attn, is_cross: bool, place_in_unet: str):
268
- super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
269
- if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
270
- h = attn.shape[0] // (self.batch_size)
271
- attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
272
- attn_base, attn_repalce = attn[0], attn[1:]
273
- if is_cross:
274
- alpha_words = self.cross_replace_alpha[self.cur_step]
275
- attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
276
- attn[1:] = attn_repalce_new
277
- else:
278
- attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet)
279
- attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
280
- return attn
281
-
282
- def __init__(self, prompts, num_steps: int,
283
- cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
284
- self_replace_steps: Union[float, Tuple[float, float]],
285
- local_blend: Optional[LocalBlend]):
286
- super(AttentionControlEdit, self).__init__()
287
- self.batch_size = len(prompts)
288
- self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
289
- if type(self_replace_steps) is float:
290
- self_replace_steps = 0, self_replace_steps
291
- self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
292
- self.local_blend = local_blend
293
-
294
- class AttentionReplace(AttentionControlEdit):
295
-
296
- def replace_cross_attention(self, attn_base, att_replace):
297
- return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
298
-
299
- def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
300
- local_blend: Optional[LocalBlend] = None):
301
- super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
302
- self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
303
-
304
-
305
- class AttentionRefine(AttentionControlEdit):
306
-
307
- def replace_cross_attention(self, attn_base, att_replace):
308
- attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
309
- attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
310
- return attn_replace
311
-
312
- def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
313
- local_blend: Optional[LocalBlend] = None):
314
- super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
315
- self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
316
- self.mapper, alphas = self.mapper.to(device), alphas.to(device)
317
- self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
318
-
319
-
320
- class AttentionReweight(AttentionControlEdit):
321
-
322
- def replace_cross_attention(self, attn_base, att_replace):
323
- if self.prev_controller is not None:
324
- attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
325
- attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
326
- return attn_replace
327
-
328
- def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
329
- local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
330
- super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
331
- self.equalizer = equalizer.to(device)
332
- self.prev_controller = controller
333
-
334
-
335
- def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
336
- Tuple[float, ...]]):
337
- if type(word_select) is int or type(word_select) is str:
338
- word_select = (word_select,)
339
- equalizer = torch.ones(1, 77)
340
-
341
- for word, val in zip(word_select, values):
342
- inds = ptp_utils.get_word_inds(text, word, tokenizer)
343
- equalizer[:, inds] = val
344
- return equalizer
345
-
346
- def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
347
- out = []
348
- attention_maps = attention_store.get_average_attention()
349
- num_pixels = res ** 2
350
- for location in from_where:
351
- for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
352
- if item.shape[1] == num_pixels: # torch.Size([64, 256, 77]) all can pass
353
- cross_maps = item.reshape(8, 8, res, res, item.shape[-1])
354
- out.append(cross_maps)
355
- out = torch.cat(out, dim=1)
356
- out = out.sum(1) / out.shape[1]
357
- return out.cpu()
358
-
359
-
360
- def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None, mask_th=(.3,.3)) -> AttentionControlEdit:
361
- if blend_words is None:
362
- lb = None
363
- else:
364
- lb = LocalBlend(prompts, blend_word, th=mask_th)
365
- if is_replace_controller:
366
- controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
367
- else:
368
- controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
369
- if equilizer_params is not None:
370
- eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"])
371
- controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps,
372
- self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller)
373
- return controller
374
-
375
-
376
- def load_512_seq(image_path, left=0, right=0, top=0, bottom=0, n_sample_frame=video_len, sampling_rate=1):
377
- images = []
378
- for file in sorted(os.listdir(image_path)):
379
- images.append(file)
380
- n_images = len(images)
381
- sequence_length = (n_sample_frame - 1) * sampling_rate + 1
382
- if n_images < sequence_length:
383
- raise ValueError
384
- frames = []
385
- for index in range(n_sample_frame):
386
- p = os.path.join(image_path, images[index])
387
- image = np.array(Image.open(p).convert("RGB"))
388
- h, w, c = image.shape
389
- left = min(left, w-1)
390
- right = min(right, w - left - 1)
391
- top = min(top, h - left - 1)
392
- bottom = min(bottom, h - top - 1)
393
- image = image[top:h-bottom, left:w-right]
394
- h, w, c = image.shape
395
- if h < w:
396
- offset = (w - h) // 2
397
- image = image[:, offset:offset + h]
398
- elif w < h:
399
- offset = (h - w) // 2
400
- image = image[offset:offset + w]
401
- image = np.array(Image.fromarray(image).resize((512, 512)))
402
- frames.append(image)
403
- return np.stack(frames)
404
-
405
-
406
- class NullInversion:
407
-
408
- def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
409
- prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
410
- alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
411
- alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
412
- beta_prod_t = 1 - alpha_prod_t
413
- pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
414
- pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
415
- prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
416
- return prev_sample
417
-
418
- def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): # doing inversion (math)
419
- timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
420
- alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
421
- alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
422
- beta_prod_t = 1 - alpha_prod_t
423
- next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
424
- next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
425
- next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
426
- return next_sample
427
-
428
- def get_noise_pred_single(self, latents, t, context): # latents: torch.Size([1, 4, 64, 64]); t: tensor(1); context: torch.Size([1, 77, 768])
429
- # formats are correct for video unet input; Tune-A-Video also predicts the residual
430
- noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"] # easy to out of mem
431
- return noise_pred
432
-
433
- def get_noise_pred(self, latents, t, is_forward=True, context=None):
434
- latents_input = torch.cat([latents] * 2)
435
- if context is None:
436
- context = self.context
437
- guidance_scale = 1 if is_forward else GUIDANCE_SCALE
438
- noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
439
- noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
440
- noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
441
- if is_forward:
442
- latents = self.next_step(noise_pred, t, latents)
443
- else:
444
- latents = self.prev_step(noise_pred, t, latents)
445
- return latents
446
-
447
- @torch.no_grad()
448
- def latent2image(self, latents, return_type='np'):
449
- latents = 1 / 0.18215 * latents.detach()
450
- image = self.model.vae.decode(latents)['sample']
451
- if return_type == 'np':
452
- image = (image / 2 + 0.5).clamp(0, 1)
453
- image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
454
- image = (image * 255).astype(np.uint8)
455
- return image
456
-
457
- @torch.no_grad()
458
- def latent2image_video(self, latents, return_type='np'):
459
- latents = 1 / 0.18215 * latents.detach()
460
- latents = latents[0].permute(1, 0, 2, 3)
461
- image = self.model.vae.decode(latents)['sample']
462
- if return_type == 'np':
463
- image = (image / 2 + 0.5).clamp(0, 1)
464
- image = image.cpu().permute(0, 2, 3, 1).numpy()
465
- image = (image * 255).astype(np.uint8)
466
- return image
467
-
468
- @torch.no_grad()
469
- def image2latent(self, image):
470
- with torch.no_grad():
471
- if type(image) is Image:
472
- image = np.array(image)
473
- if type(image) is torch.Tensor and image.dim() == 4:
474
- latents = image
475
- else:
476
- image = torch.from_numpy(image).float() / 127.5 - 1
477
- image = image.permute(2, 0, 1).unsqueeze(0).to(device)
478
- latents = self.model.vae.encode(image)['latent_dist'].mean
479
- latents = latents * 0.18215
480
- return latents
481
-
482
- @torch.no_grad()
483
- def image2latent_video(self, image):
484
- with torch.no_grad():
485
- image = torch.from_numpy(image).float() / 127.5 - 1
486
- image = image.permute(0, 3, 1, 2).to(device)
487
- latents = self.model.vae.encode(image)['latent_dist'].mean
488
- latents = rearrange(latents, "(b f) c h w -> b c f h w", b=1)
489
- latents = latents * 0.18215
490
- return latents
491
-
492
- @torch.no_grad()
493
- def init_prompt(self, prompt: str):
494
- uncond_input = self.model.tokenizer(
495
- [""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
496
- return_tensors="pt"
497
- )
498
- uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0] # len=2, uncond_embeddings
499
- text_input = self.model.tokenizer(
500
- [prompt],
501
- padding="max_length",
502
- max_length=self.model.tokenizer.model_max_length,
503
- truncation=True,
504
- return_tensors="pt",
505
- )
506
- text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
507
- self.context = torch.cat([uncond_embeddings, text_embeddings])
508
- self.prompt = prompt
509
-
510
- @torch.no_grad()
511
- def ddim_loop(self, latent):
512
- uncond_embeddings, cond_embeddings = self.context.chunk(2)
513
- all_latent = [latent]
514
- latent = latent.clone().detach()
515
- for i in range(NUM_DDIM_STEPS):
516
- t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
517
- # latent: torch.Size([1, 4, 8, 16, 16])
518
- # cond_embeddings: torch.Size([1, 77, 768])
519
- # noise_pred: torch.Size([1, 4, 8, 16, 16])
520
- noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings) # use a unet
521
- latent = self.next_step(noise_pred, t, latent)
522
- all_latent.append(latent)
523
- return all_latent
524
-
525
- @property
526
- def scheduler(self):
527
- return self.model.scheduler
528
-
529
- @torch.no_grad()
530
- def ddim_inversion(self, image):
531
- latent = self.image2latent_video(image)
532
- image_rec = self.latent2image_video(latent) # image: (512, 512, 3); latent: torch.Size([1, 4, 64, 64])
533
- ddim_latents = self.ddim_loop(latent)
534
- return image_rec, ddim_latents
535
-
536
- def null_optimization(self, latents, num_inner_steps, epsilon): # uncond_embeddings is what we what
537
- uncond_embeddings, cond_embeddings = self.context.chunk(2)
538
- uncond_embeddings_list = []
539
- latent_cur = latents[-1]
540
- bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS)
541
- for i in range(NUM_DDIM_STEPS):
542
- uncond_embeddings = uncond_embeddings.clone().detach()
543
- uncond_embeddings.requires_grad = True
544
- optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
545
- latent_prev = latents[len(latents) - i - 2] # GT
546
- t = self.model.scheduler.timesteps[i]
547
- with torch.no_grad():
548
- noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
549
- for j in range(num_inner_steps):
550
- noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
551
- noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond)
552
- latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
553
- loss = nnf.mse_loss(latents_prev_rec, latent_prev)
554
- optimizer.zero_grad()
555
- loss.backward()
556
- optimizer.step()
557
- loss_item = loss.item()
558
- bar.update()
559
- if loss_item < epsilon + i * 2e-5:
560
- break
561
- for j in range(j + 1, num_inner_steps):
562
- bar.update()
563
- uncond_embeddings_list.append(uncond_embeddings[:1].detach())
564
- with torch.no_grad():
565
- context = torch.cat([uncond_embeddings, cond_embeddings])
566
- latent_cur = self.get_noise_pred(latent_cur, t, False, context)
567
- bar.close()
568
- return uncond_embeddings_list
569
-
570
- def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
571
- self.init_prompt(prompt)
572
- ptp_utils.register_attention_control(self.model, None)
573
- image_gt = load_512_seq(image_path, *offsets)
574
- if verbose:
575
- print("DDIM inversion...")
576
- image_rec, ddim_latents = self.ddim_inversion(image_gt) # ddim_latents is a list, like the link in Figure 3
577
- # image_rec refers to vq-autoencoder reconstruction
578
- if verbose:
579
- print("Null-text optimization...")
580
- uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon) # ddim_latents serve as GT; easy to out of mem
581
- return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings
582
-
583
- def invert_(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
584
- self.init_prompt(prompt)
585
- ptp_utils.register_attention_control(self.model, None)
586
- image_gt = load_512_seq(image_path, *offsets)
587
- if verbose:
588
- print("DDIM inversion...")
589
- image_rec, ddim_latents = self.ddim_inversion(image_gt) # ddim_latents is a list, like the link in Figure 3
590
- # image_rec refers to vq-autoencoder reconstruction
591
- if verbose:
592
- print("Null-text optimization...")
593
- return (image_gt, image_rec), ddim_latents[-1], None
594
-
595
- def __init__(self, model):
596
- scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
597
- set_alpha_to_one=False)
598
- self.model = model
599
- self.tokenizer = self.model.tokenizer
600
- self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
601
- self.prompt = None
602
- self.context = None
603
-
604
- null_inversion = NullInversion(ldm_stable)
605
-
606
-
607
- @torch.no_grad()
608
- def text2image_ldm_stable(
609
- model,
610
- prompt: List[str],
611
- controller,
612
- num_inference_steps: int = 50,
613
- guidance_scale: Optional[float] = 7.5,
614
- generator: Optional[torch.Generator] = None,
615
- latent: Optional[torch.FloatTensor] = None,
616
- uncond_embeddings=None,
617
- start_time=50,
618
- return_type='image'
619
- ):
620
- batch_size = len(prompt)
621
- ptp_utils.register_attention_control(model, controller)
622
- height = width = 512
623
-
624
- text_input = model.tokenizer(
625
- prompt,
626
- padding="max_length",
627
- max_length=model.tokenizer.model_max_length,
628
- truncation=True,
629
- return_tensors="pt",
630
- )
631
- text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
632
-
633
- max_length = text_input.input_ids.shape[-1]
634
- if uncond_embeddings is None:
635
- uncond_input = model.tokenizer(
636
- [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
637
- )
638
- uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
639
- else:
640
- uncond_embeddings_ = None
641
-
642
- model.scheduler.set_timesteps(num_inference_steps)
643
- for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])):
644
- if uncond_embeddings_ is None:
645
- context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
646
- else:
647
- context = torch.cat([uncond_embeddings_, text_embeddings])
648
- latents = latent
649
- latents = ptp_utils.diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False)
650
- if return_type == 'image':
651
- image = ptp_utils.latent2image_video(model.vae, latents)
652
- else:
653
- image = latents
654
- return image, latent
655
-
656
-
657
- ###############
658
- # Custom APIs:
659
-
660
- ldm_stable.enable_xformers_memory_efficient_attention()
661
-
662
- (image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert(image_path, prompt, offsets=(0,0,0,0), verbose=True)
663
-
664
- ##### load uncond #####
665
- # uncond_embeddings_load = np.load(uncond_embeddings_path)
666
- # uncond_embeddings = []
667
- # for i in range(uncond_embeddings_load.shape[0]):
668
- # uncond_embeddings.append(torch.from_numpy(uncond_embeddings_load[i]).to(device))
669
- #######################
670
-
671
- ##### save uncond #####
672
- # uncond_embeddings = torch.cat(uncond_embeddings)
673
- # uncond_embeddings = uncond_embeddings.cpu().numpy()
674
- #######################
675
-
676
- print("Start Video-P2P!")
677
-
678
- controller = make_controller(prompts, IRC, cross_replace_steps, self_replace_steps, blend_word, eq_params, mask_th=mask_th)
679
- ptp_utils.register_attention_control(ldm_stable, controller)
680
- generator = torch.Generator(device=device)
681
- with torch.no_grad():
682
- sequence = ldm_stable(
683
- prompts,
684
- generator=generator,
685
- latents=x_t,
686
- uncond_embeddings_pre=uncond_embeddings,
687
- controller = controller,
688
- video_length=video_len,
689
- simple=True,
690
- ).videos
691
- sequence1 = rearrange(sequence[0], "c t h w -> t h w c")
692
- sequence2 = rearrange(sequence[1], "c t h w -> t h w c")
693
- inversion = []
694
- videop2p = []
695
- for i in range(sequence1.shape[0]):
696
- inversion.append( Image.fromarray((sequence1[i] * 255).numpy().astype(np.uint8)) )
697
- videop2p.append( Image.fromarray((sequence2[i] * 255).numpy().astype(np.uint8)) )
698
-
699
- inversion[0].save(gif_name_1.replace('name', 'inversion'), save_all=True, append_images=inversion[1:], optimize=False, loop=0, duration=250)
700
- videop2p[0].save(gif_name_2.replace('name', 'p2p'), save_all=True, append_images=videop2p[1:], optimize=False, loop=0, duration=250)
701
-
702
- if __name__ == "__main__":
703
- parser = argparse.ArgumentParser()
704
- parser.add_argument("--config", type=str, default="./configs/videop2p.yaml")
705
- args = parser.parse_args()
706
-
707
- main(**OmegaConf.load(args.config))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/script.sh DELETED
@@ -1,5 +0,0 @@
1
- # python run_tuning.py --config="configs/rabbit-jump.yaml"
2
-
3
- python run_videop2p.py --config="configs/rabbit-jump-p2p.yaml"
4
-
5
- # python run_tuning.py --config="configs/man-motor.yaml"
 
 
 
 
 
 
Video-P2P/seq_aligner.py DELETED
@@ -1,196 +0,0 @@
1
- # Copyright 2022 Google LLC
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import torch
15
- import numpy as np
16
-
17
-
18
- class ScoreParams:
19
-
20
- def __init__(self, gap, match, mismatch):
21
- self.gap = gap
22
- self.match = match
23
- self.mismatch = mismatch
24
-
25
- def mis_match_char(self, x, y):
26
- if x != y:
27
- return self.mismatch
28
- else:
29
- return self.match
30
-
31
-
32
- def get_matrix(size_x, size_y, gap):
33
- matrix = []
34
- for i in range(len(size_x) + 1):
35
- sub_matrix = []
36
- for j in range(len(size_y) + 1):
37
- sub_matrix.append(0)
38
- matrix.append(sub_matrix)
39
- for j in range(1, len(size_y) + 1):
40
- matrix[0][j] = j*gap
41
- for i in range(1, len(size_x) + 1):
42
- matrix[i][0] = i*gap
43
- return matrix
44
-
45
-
46
- def get_matrix(size_x, size_y, gap):
47
- matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
48
- matrix[0, 1:] = (np.arange(size_y) + 1) * gap
49
- matrix[1:, 0] = (np.arange(size_x) + 1) * gap
50
- return matrix
51
-
52
-
53
- def get_traceback_matrix(size_x, size_y):
54
- matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32)
55
- matrix[0, 1:] = 1
56
- matrix[1:, 0] = 2
57
- matrix[0, 0] = 4
58
- return matrix
59
-
60
-
61
- def global_align(x, y, score):
62
- matrix = get_matrix(len(x), len(y), score.gap)
63
- trace_back = get_traceback_matrix(len(x), len(y))
64
- for i in range(1, len(x) + 1):
65
- for j in range(1, len(y) + 1):
66
- left = matrix[i, j - 1] + score.gap
67
- up = matrix[i - 1, j] + score.gap
68
- diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
69
- matrix[i, j] = max(left, up, diag)
70
- if matrix[i, j] == left:
71
- trace_back[i, j] = 1
72
- elif matrix[i, j] == up:
73
- trace_back[i, j] = 2
74
- else:
75
- trace_back[i, j] = 3
76
- return matrix, trace_back
77
-
78
-
79
- def get_aligned_sequences(x, y, trace_back):
80
- x_seq = []
81
- y_seq = []
82
- i = len(x)
83
- j = len(y)
84
- mapper_y_to_x = []
85
- while i > 0 or j > 0:
86
- if trace_back[i, j] == 3:
87
- x_seq.append(x[i-1])
88
- y_seq.append(y[j-1])
89
- i = i-1
90
- j = j-1
91
- mapper_y_to_x.append((j, i))
92
- elif trace_back[i][j] == 1:
93
- x_seq.append('-')
94
- y_seq.append(y[j-1])
95
- j = j-1
96
- mapper_y_to_x.append((j, -1))
97
- elif trace_back[i][j] == 2:
98
- x_seq.append(x[i-1])
99
- y_seq.append('-')
100
- i = i-1
101
- elif trace_back[i][j] == 4:
102
- break
103
- mapper_y_to_x.reverse()
104
- return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
105
-
106
-
107
- def get_mapper(x: str, y: str, tokenizer, max_len=77):
108
- x_seq = tokenizer.encode(x)
109
- y_seq = tokenizer.encode(y)
110
- score = ScoreParams(0, 1, -1)
111
- matrix, trace_back = global_align(x_seq, y_seq, score)
112
- mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
113
- alphas = torch.ones(max_len)
114
- alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
115
- mapper = torch.zeros(max_len, dtype=torch.int64)
116
- mapper[:mapper_base.shape[0]] = mapper_base[:, 1]
117
- mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq))
118
- return mapper, alphas
119
-
120
-
121
- def get_refinement_mapper(prompts, tokenizer, max_len=77):
122
- x_seq = prompts[0]
123
- mappers, alphas = [], []
124
- for i in range(1, len(prompts)):
125
- mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
126
- mappers.append(mapper)
127
- alphas.append(alpha)
128
- return torch.stack(mappers), torch.stack(alphas)
129
-
130
-
131
- def get_word_inds(text: str, word_place: int, tokenizer):
132
- split_text = text.split(" ")
133
- if type(word_place) is str:
134
- word_place = [i for i, word in enumerate(split_text) if word_place == word]
135
- elif type(word_place) is int:
136
- word_place = [word_place]
137
- out = []
138
- if len(word_place) > 0:
139
- words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
140
- cur_len, ptr = 0, 0
141
-
142
- for i in range(len(words_encode)):
143
- cur_len += len(words_encode[i])
144
- if ptr in word_place:
145
- out.append(i + 1)
146
- if cur_len >= len(split_text[ptr]):
147
- ptr += 1
148
- cur_len = 0
149
- return np.array(out)
150
-
151
-
152
- def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
153
- words_x = x.split(' ')
154
- words_y = y.split(' ')
155
- if len(words_x) != len(words_y):
156
- raise ValueError(f"attention replacement edit can only be applied on prompts with the same length"
157
- f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.")
158
- inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
159
- inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
160
- inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
161
- mapper = np.zeros((max_len, max_len))
162
- i = j = 0
163
- cur_inds = 0
164
- while i < max_len and j < max_len:
165
- if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
166
- inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
167
- if len(inds_source_) == len(inds_target_):
168
- mapper[inds_source_, inds_target_] = 1
169
- else:
170
- ratio = 1 / len(inds_target_)
171
- for i_t in inds_target_:
172
- mapper[inds_source_, i_t] = ratio
173
- cur_inds += 1
174
- i += len(inds_source_)
175
- j += len(inds_target_)
176
- elif cur_inds < len(inds_source):
177
- mapper[i, j] = 1
178
- i += 1
179
- j += 1
180
- else:
181
- mapper[j, j] = 1
182
- i += 1
183
- j += 1
184
-
185
- return torch.from_numpy(mapper).float()
186
-
187
-
188
-
189
- def get_replacement_mapper(prompts, tokenizer, max_len=77):
190
- x_seq = prompts[0]
191
- mappers = []
192
- for i in range(1, len(prompts)):
193
- mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
194
- mappers.append(mapper)
195
- return torch.stack(mappers)
196
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/tuneavideo/data/dataset.py DELETED
@@ -1,57 +0,0 @@
1
- import decord
2
- decord.bridge.set_bridge('torch')
3
-
4
- from torch.utils.data import Dataset
5
- from einops import rearrange
6
- import os
7
- from PIL import Image
8
- import numpy as np
9
-
10
- class TuneAVideoDataset(Dataset):
11
- def __init__(
12
- self,
13
- video_path: str,
14
- prompt: str,
15
- width: int = 512,
16
- height: int = 512,
17
- n_sample_frames: int = 8,
18
- sample_start_idx: int = 0,
19
- sample_frame_rate: int = 1,
20
- ):
21
- self.video_path = video_path
22
- self.prompt = prompt
23
- self.prompt_ids = None
24
- self.uncond_prompt_ids = None
25
-
26
- self.width = width
27
- self.height = height
28
- self.n_sample_frames = n_sample_frames
29
- self.sample_start_idx = sample_start_idx
30
- self.sample_frame_rate = sample_frame_rate
31
-
32
- if 'mp4' not in self.video_path:
33
- self.images = []
34
- for file in sorted(os.listdir(self.video_path), key=lambda x: int(x[:-4])):
35
- if file.endswith('jpg'):
36
- self.images.append(np.asarray(Image.open(os.path.join(self.video_path, file)).convert('RGB').resize((self.width, self.height))))
37
- self.images = np.stack(self.images)
38
-
39
- def __len__(self):
40
- return 1
41
-
42
- def __getitem__(self, index):
43
- # load and sample video frames
44
- if 'mp4' in self.video_path:
45
- vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
46
- sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
47
- video = vr.get_batch(sample_index)
48
- else:
49
- video = self.images[:self.n_sample_frames]
50
- video = rearrange(video, "f h w c -> f c h w")
51
-
52
- example = {
53
- "pixel_values": (video / 127.5 - 1.0),
54
- "prompt_ids": self.prompt_ids,
55
- }
56
-
57
- return example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/tuneavideo/models/attention.py DELETED
@@ -1,388 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
-
3
- from dataclasses import dataclass
4
- from typing import Optional
5
-
6
- import torch
7
- import torch.nn.functional as F
8
- from torch import nn
9
-
10
- from diffusers.configuration_utils import ConfigMixin, register_to_config
11
- from diffusers.modeling_utils import ModelMixin
12
- from diffusers.utils import BaseOutput
13
- from diffusers.utils.import_utils import is_xformers_available
14
- from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
15
-
16
- from einops import rearrange, repeat
17
-
18
-
19
- @dataclass
20
- class Transformer3DModelOutput(BaseOutput):
21
- sample: torch.FloatTensor
22
-
23
-
24
- if is_xformers_available():
25
- import xformers
26
- import xformers.ops
27
- else:
28
- xformers = None
29
-
30
-
31
- class Transformer3DModel(ModelMixin, ConfigMixin):
32
- @register_to_config
33
- def __init__(
34
- self,
35
- num_attention_heads: int = 16,
36
- attention_head_dim: int = 88,
37
- in_channels: Optional[int] = None,
38
- num_layers: int = 1,
39
- dropout: float = 0.0,
40
- norm_num_groups: int = 32,
41
- cross_attention_dim: Optional[int] = None,
42
- attention_bias: bool = False,
43
- activation_fn: str = "geglu",
44
- num_embeds_ada_norm: Optional[int] = None,
45
- use_linear_projection: bool = False,
46
- only_cross_attention: bool = False,
47
- upcast_attention: bool = False,
48
- ):
49
- super().__init__()
50
- self.use_linear_projection = use_linear_projection
51
- self.num_attention_heads = num_attention_heads
52
- self.attention_head_dim = attention_head_dim
53
- inner_dim = num_attention_heads * attention_head_dim
54
-
55
- # Define input layers
56
- self.in_channels = in_channels
57
-
58
- self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
59
- if use_linear_projection:
60
- self.proj_in = nn.Linear(in_channels, inner_dim)
61
- else:
62
- self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
63
-
64
- # Define transformers blocks
65
- self.transformer_blocks = nn.ModuleList(
66
- [
67
- BasicTransformerBlock(
68
- inner_dim,
69
- num_attention_heads,
70
- attention_head_dim,
71
- dropout=dropout,
72
- cross_attention_dim=cross_attention_dim,
73
- activation_fn=activation_fn,
74
- num_embeds_ada_norm=num_embeds_ada_norm,
75
- attention_bias=attention_bias,
76
- only_cross_attention=only_cross_attention,
77
- upcast_attention=upcast_attention,
78
- )
79
- for d in range(num_layers)
80
- ]
81
- )
82
-
83
- # 4. Define output layers
84
- if use_linear_projection:
85
- self.proj_out = nn.Linear(in_channels, inner_dim)
86
- else:
87
- self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
88
-
89
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
90
- # Input
91
- assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
92
- video_length = hidden_states.shape[2]
93
- hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
94
- encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
95
-
96
- batch, channel, height, weight = hidden_states.shape
97
- residual = hidden_states
98
-
99
- hidden_states = self.norm(hidden_states)
100
- if not self.use_linear_projection:
101
- hidden_states = self.proj_in(hidden_states)
102
- inner_dim = hidden_states.shape[1]
103
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
104
- else:
105
- inner_dim = hidden_states.shape[1]
106
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
107
- hidden_states = self.proj_in(hidden_states)
108
-
109
- # Blocks
110
- for block in self.transformer_blocks:
111
- hidden_states = block(
112
- hidden_states,
113
- encoder_hidden_states=encoder_hidden_states,
114
- timestep=timestep,
115
- video_length=video_length
116
- )
117
-
118
- # Output
119
- if not self.use_linear_projection:
120
- hidden_states = (
121
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
122
- )
123
- hidden_states = self.proj_out(hidden_states)
124
- else:
125
- hidden_states = self.proj_out(hidden_states)
126
- hidden_states = (
127
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
128
- )
129
-
130
- output = hidden_states + residual
131
-
132
- output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
133
- if not return_dict:
134
- return (output,)
135
-
136
- return Transformer3DModelOutput(sample=output)
137
-
138
-
139
- class BasicTransformerBlock(nn.Module):
140
- def __init__(
141
- self,
142
- dim: int,
143
- num_attention_heads: int,
144
- attention_head_dim: int,
145
- dropout=0.0,
146
- cross_attention_dim: Optional[int] = None,
147
- activation_fn: str = "geglu",
148
- num_embeds_ada_norm: Optional[int] = None,
149
- attention_bias: bool = False,
150
- only_cross_attention: bool = False,
151
- upcast_attention: bool = False,
152
- ):
153
- super().__init__()
154
- self.only_cross_attention = only_cross_attention
155
- self.use_ada_layer_norm = num_embeds_ada_norm is not None
156
-
157
- # SC-Attn
158
- self.attn1 = FrameAttention(
159
- # self.attn1 = SparseCausalAttention(
160
- query_dim=dim,
161
- heads=num_attention_heads,
162
- dim_head=attention_head_dim,
163
- dropout=dropout,
164
- bias=attention_bias,
165
- cross_attention_dim=cross_attention_dim if only_cross_attention else None,
166
- upcast_attention=upcast_attention,
167
- )
168
- self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
169
-
170
- # Cross-Attn
171
- if cross_attention_dim is not None:
172
- self.attn2 = CrossAttention(
173
- query_dim=dim,
174
- cross_attention_dim=cross_attention_dim,
175
- heads=num_attention_heads,
176
- dim_head=attention_head_dim,
177
- dropout=dropout,
178
- bias=attention_bias,
179
- upcast_attention=upcast_attention,
180
- )
181
- else:
182
- self.attn2 = None
183
-
184
- if cross_attention_dim is not None:
185
- self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
186
- else:
187
- self.norm2 = None
188
-
189
- # Feed-forward
190
- self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
191
- self.norm3 = nn.LayerNorm(dim)
192
-
193
- # Temp-Attn
194
- self.attn_temp = CrossAttention(
195
- query_dim=dim,
196
- heads=num_attention_heads,
197
- dim_head=attention_head_dim,
198
- dropout=dropout,
199
- bias=attention_bias,
200
- upcast_attention=upcast_attention,
201
- )
202
- nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
203
- self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
204
-
205
- def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
206
- if not is_xformers_available():
207
- print("Here is how to install it")
208
- raise ModuleNotFoundError(
209
- "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
210
- " xformers",
211
- name="xformers",
212
- )
213
- elif not torch.cuda.is_available():
214
- raise ValueError(
215
- "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
216
- " available for GPU "
217
- )
218
- else:
219
- try:
220
- # Make sure we can run the memory efficient attention
221
- _ = xformers.ops.memory_efficient_attention(
222
- torch.randn((1, 2, 40), device="cuda"),
223
- torch.randn((1, 2, 40), device="cuda"),
224
- torch.randn((1, 2, 40), device="cuda"),
225
- )
226
- except Exception as e:
227
- raise e
228
- self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
229
- if self.attn2 is not None:
230
- self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
231
- # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
232
-
233
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
234
- # SparseCausal-Attention
235
- norm_hidden_states = (
236
- self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
237
- )
238
-
239
- if self.only_cross_attention:
240
- hidden_states = (
241
- self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
242
- )
243
- else:
244
- hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
245
-
246
- if self.attn2 is not None:
247
- # Cross-Attention
248
- norm_hidden_states = (
249
- self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
250
- )
251
- hidden_states = (
252
- self.attn2(
253
- norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
254
- )
255
- + hidden_states
256
- )
257
-
258
- # Feed-forward
259
- hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
260
-
261
- # Temporal-Attention
262
- d = hidden_states.shape[1]
263
- hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
264
- norm_hidden_states = (
265
- self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
266
- )
267
- hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
268
- hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
269
-
270
- return hidden_states
271
-
272
-
273
- class SparseCausalAttention(CrossAttention):
274
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
275
- batch_size, sequence_length, _ = hidden_states.shape
276
-
277
- encoder_hidden_states = encoder_hidden_states
278
-
279
- if self.group_norm is not None:
280
- hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
281
-
282
- query = self.to_q(hidden_states)
283
- dim = query.shape[-1]
284
- query = self.reshape_heads_to_batch_dim(query)
285
-
286
- if self.added_kv_proj_dim is not None:
287
- raise NotImplementedError
288
-
289
- encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
290
- key = self.to_k(encoder_hidden_states)
291
- value = self.to_v(encoder_hidden_states)
292
-
293
- former_frame_index = torch.arange(video_length) - 1
294
- former_frame_index[0] = 0
295
-
296
- key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
297
- key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
298
- key = rearrange(key, "b f d c -> (b f) d c")
299
-
300
- value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
301
- value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
302
- value = rearrange(value, "b f d c -> (b f) d c")
303
-
304
- key = self.reshape_heads_to_batch_dim(key)
305
- value = self.reshape_heads_to_batch_dim(value)
306
-
307
- if attention_mask is not None:
308
- if attention_mask.shape[-1] != query.shape[1]:
309
- target_length = query.shape[1]
310
- attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
311
- attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
312
-
313
- # attention, what we cannot get enough of
314
- if self._use_memory_efficient_attention_xformers:
315
- hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
316
- # Some versions of xformers return output in fp32, cast it back to the dtype of the input
317
- hidden_states = hidden_states.to(query.dtype)
318
- else:
319
- if self._slice_size is None or query.shape[0] // self._slice_size == 1:
320
- hidden_states = self._attention(query, key, value, attention_mask)
321
- else:
322
- hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
323
-
324
- # linear proj
325
- hidden_states = self.to_out[0](hidden_states)
326
-
327
- # dropout
328
- hidden_states = self.to_out[1](hidden_states)
329
- return hidden_states
330
-
331
-
332
- class FrameAttention(CrossAttention):
333
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
334
- batch_size, sequence_length, _ = hidden_states.shape
335
-
336
- encoder_hidden_states = encoder_hidden_states
337
-
338
- if self.group_norm is not None:
339
- hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
340
-
341
- query = self.to_q(hidden_states)
342
- dim = query.shape[-1]
343
- query = self.reshape_heads_to_batch_dim(query)
344
-
345
- if self.added_kv_proj_dim is not None:
346
- raise NotImplementedError
347
-
348
- encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
349
- key = self.to_k(encoder_hidden_states)
350
- value = self.to_v(encoder_hidden_states)
351
-
352
- former_frame_index = torch.arange(video_length) - 1
353
- former_frame_index[0] = 0
354
-
355
- key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
356
- key = key[:, [0] * video_length]
357
- key = rearrange(key, "b f d c -> (b f) d c")
358
-
359
- value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
360
- value = value[:, [0] * video_length]
361
- value = rearrange(value, "b f d c -> (b f) d c")
362
-
363
- key = self.reshape_heads_to_batch_dim(key)
364
- value = self.reshape_heads_to_batch_dim(value)
365
-
366
- if attention_mask is not None:
367
- if attention_mask.shape[-1] != query.shape[1]:
368
- target_length = query.shape[1]
369
- attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
370
- attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
371
-
372
- # attention, what we cannot get enough of
373
- if self._use_memory_efficient_attention_xformers:
374
- hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
375
- # Some versions of xformers return output in fp32, cast it back to the dtype of the input
376
- hidden_states = hidden_states.to(query.dtype)
377
- else:
378
- if self._slice_size is None or query.shape[0] // self._slice_size == 1:
379
- hidden_states = self._attention(query, key, value, attention_mask)
380
- else:
381
- hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
382
-
383
- # linear proj
384
- hidden_states = self.to_out[0](hidden_states)
385
-
386
- # dropout
387
- hidden_states = self.to_out[1](hidden_states)
388
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/tuneavideo/models/resnet.py DELETED
@@ -1,209 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
- from einops import rearrange
8
-
9
-
10
- class InflatedConv3d(nn.Conv2d):
11
- def forward(self, x):
12
- video_length = x.shape[2]
13
-
14
- x = rearrange(x, "b c f h w -> (b f) c h w")
15
- x = super().forward(x)
16
- x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
-
18
- return x
19
-
20
-
21
- class Upsample3D(nn.Module):
22
- def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
23
- super().__init__()
24
- self.channels = channels
25
- self.out_channels = out_channels or channels
26
- self.use_conv = use_conv
27
- self.use_conv_transpose = use_conv_transpose
28
- self.name = name
29
-
30
- conv = None
31
- if use_conv_transpose:
32
- raise NotImplementedError
33
- elif use_conv:
34
- conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
35
-
36
- if name == "conv":
37
- self.conv = conv
38
- else:
39
- self.Conv2d_0 = conv
40
-
41
- def forward(self, hidden_states, output_size=None):
42
- assert hidden_states.shape[1] == self.channels
43
-
44
- if self.use_conv_transpose:
45
- raise NotImplementedError
46
-
47
- # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
48
- dtype = hidden_states.dtype
49
- if dtype == torch.bfloat16:
50
- hidden_states = hidden_states.to(torch.float32)
51
-
52
- # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
53
- if hidden_states.shape[0] >= 64:
54
- hidden_states = hidden_states.contiguous()
55
-
56
- # if `output_size` is passed we force the interpolation output
57
- # size and do not make use of `scale_factor=2`
58
- if output_size is None:
59
- hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
60
- else:
61
- hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
62
-
63
- # If the input is bfloat16, we cast back to bfloat16
64
- if dtype == torch.bfloat16:
65
- hidden_states = hidden_states.to(dtype)
66
-
67
- if self.use_conv:
68
- if self.name == "conv":
69
- hidden_states = self.conv(hidden_states)
70
- else:
71
- hidden_states = self.Conv2d_0(hidden_states)
72
-
73
- return hidden_states
74
-
75
-
76
- class Downsample3D(nn.Module):
77
- def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
78
- super().__init__()
79
- self.channels = channels
80
- self.out_channels = out_channels or channels
81
- self.use_conv = use_conv
82
- self.padding = padding
83
- stride = 2
84
- self.name = name
85
-
86
- if use_conv:
87
- conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
88
- else:
89
- raise NotImplementedError
90
-
91
- if name == "conv":
92
- self.Conv2d_0 = conv
93
- self.conv = conv
94
- elif name == "Conv2d_0":
95
- self.conv = conv
96
- else:
97
- self.conv = conv
98
-
99
- def forward(self, hidden_states):
100
- assert hidden_states.shape[1] == self.channels
101
- if self.use_conv and self.padding == 0:
102
- raise NotImplementedError
103
-
104
- assert hidden_states.shape[1] == self.channels
105
- hidden_states = self.conv(hidden_states)
106
-
107
- return hidden_states
108
-
109
-
110
- class ResnetBlock3D(nn.Module):
111
- def __init__(
112
- self,
113
- *,
114
- in_channels,
115
- out_channels=None,
116
- conv_shortcut=False,
117
- dropout=0.0,
118
- temb_channels=512,
119
- groups=32,
120
- groups_out=None,
121
- pre_norm=True,
122
- eps=1e-6,
123
- non_linearity="swish",
124
- time_embedding_norm="default",
125
- output_scale_factor=1.0,
126
- use_in_shortcut=None,
127
- ):
128
- super().__init__()
129
- self.pre_norm = pre_norm
130
- self.pre_norm = True
131
- self.in_channels = in_channels
132
- out_channels = in_channels if out_channels is None else out_channels
133
- self.out_channels = out_channels
134
- self.use_conv_shortcut = conv_shortcut
135
- self.time_embedding_norm = time_embedding_norm
136
- self.output_scale_factor = output_scale_factor
137
-
138
- if groups_out is None:
139
- groups_out = groups
140
-
141
- self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
142
-
143
- self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
144
-
145
- if temb_channels is not None:
146
- if self.time_embedding_norm == "default":
147
- time_emb_proj_out_channels = out_channels
148
- elif self.time_embedding_norm == "scale_shift":
149
- time_emb_proj_out_channels = out_channels * 2
150
- else:
151
- raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
152
-
153
- self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
154
- else:
155
- self.time_emb_proj = None
156
-
157
- self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
158
- self.dropout = torch.nn.Dropout(dropout)
159
- self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
160
-
161
- if non_linearity == "swish":
162
- self.nonlinearity = lambda x: F.silu(x)
163
- elif non_linearity == "mish":
164
- self.nonlinearity = Mish()
165
- elif non_linearity == "silu":
166
- self.nonlinearity = nn.SiLU()
167
-
168
- self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
169
-
170
- self.conv_shortcut = None
171
- if self.use_in_shortcut:
172
- self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
173
-
174
- def forward(self, input_tensor, temb):
175
- hidden_states = input_tensor
176
-
177
- hidden_states = self.norm1(hidden_states)
178
- hidden_states = self.nonlinearity(hidden_states)
179
-
180
- hidden_states = self.conv1(hidden_states)
181
-
182
- if temb is not None:
183
- temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
184
-
185
- if temb is not None and self.time_embedding_norm == "default":
186
- hidden_states = hidden_states + temb
187
-
188
- hidden_states = self.norm2(hidden_states)
189
-
190
- if temb is not None and self.time_embedding_norm == "scale_shift":
191
- scale, shift = torch.chunk(temb, 2, dim=1)
192
- hidden_states = hidden_states * (1 + scale) + shift
193
-
194
- hidden_states = self.nonlinearity(hidden_states)
195
-
196
- hidden_states = self.dropout(hidden_states)
197
- hidden_states = self.conv2(hidden_states)
198
-
199
- if self.conv_shortcut is not None:
200
- input_tensor = self.conv_shortcut(input_tensor)
201
-
202
- output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
203
-
204
- return output_tensor
205
-
206
-
207
- class Mish(torch.nn.Module):
208
- def forward(self, hidden_states):
209
- return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/tuneavideo/models/unet.py DELETED
@@ -1,450 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
2
-
3
- from dataclasses import dataclass
4
- from typing import List, Optional, Tuple, Union
5
-
6
- import os
7
- import json
8
-
9
- import torch
10
- import torch.nn as nn
11
- import torch.utils.checkpoint
12
-
13
- from diffusers.configuration_utils import ConfigMixin, register_to_config
14
- from diffusers.modeling_utils import ModelMixin
15
- from diffusers.utils import BaseOutput, logging
16
- from diffusers.models.embeddings import TimestepEmbedding, Timesteps
17
- from .unet_blocks import (
18
- CrossAttnDownBlock3D,
19
- CrossAttnUpBlock3D,
20
- DownBlock3D,
21
- UNetMidBlock3DCrossAttn,
22
- UpBlock3D,
23
- get_down_block,
24
- get_up_block,
25
- )
26
- from .resnet import InflatedConv3d
27
-
28
-
29
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
-
31
-
32
- @dataclass
33
- class UNet3DConditionOutput(BaseOutput):
34
- sample: torch.FloatTensor
35
-
36
-
37
- class UNet3DConditionModel(ModelMixin, ConfigMixin):
38
- _supports_gradient_checkpointing = True
39
-
40
- @register_to_config
41
- def __init__(
42
- self,
43
- sample_size: Optional[int] = None,
44
- in_channels: int = 4,
45
- out_channels: int = 4,
46
- center_input_sample: bool = False,
47
- flip_sin_to_cos: bool = True,
48
- freq_shift: int = 0,
49
- down_block_types: Tuple[str] = (
50
- "CrossAttnDownBlock3D",
51
- "CrossAttnDownBlock3D",
52
- "CrossAttnDownBlock3D",
53
- "DownBlock3D",
54
- ),
55
- mid_block_type: str = "UNetMidBlock3DCrossAttn",
56
- up_block_types: Tuple[str] = (
57
- "UpBlock3D",
58
- "CrossAttnUpBlock3D",
59
- "CrossAttnUpBlock3D",
60
- "CrossAttnUpBlock3D"
61
- ),
62
- only_cross_attention: Union[bool, Tuple[bool]] = False,
63
- block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
64
- layers_per_block: int = 2,
65
- downsample_padding: int = 1,
66
- mid_block_scale_factor: float = 1,
67
- act_fn: str = "silu",
68
- norm_num_groups: int = 32,
69
- norm_eps: float = 1e-5,
70
- cross_attention_dim: int = 1280,
71
- attention_head_dim: Union[int, Tuple[int]] = 8,
72
- dual_cross_attention: bool = False,
73
- use_linear_projection: bool = False,
74
- class_embed_type: Optional[str] = None,
75
- num_class_embeds: Optional[int] = None,
76
- upcast_attention: bool = False,
77
- resnet_time_scale_shift: str = "default",
78
- ):
79
- super().__init__()
80
-
81
- self.sample_size = sample_size
82
- time_embed_dim = block_out_channels[0] * 4
83
-
84
- # input
85
- self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
86
-
87
- # time
88
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
89
- timestep_input_dim = block_out_channels[0]
90
-
91
- self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
92
-
93
- # class embedding
94
- if class_embed_type is None and num_class_embeds is not None:
95
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
96
- elif class_embed_type == "timestep":
97
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
98
- elif class_embed_type == "identity":
99
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
100
- else:
101
- self.class_embedding = None
102
-
103
- self.down_blocks = nn.ModuleList([])
104
- self.mid_block = None
105
- self.up_blocks = nn.ModuleList([])
106
-
107
- if isinstance(only_cross_attention, bool):
108
- only_cross_attention = [only_cross_attention] * len(down_block_types)
109
-
110
- if isinstance(attention_head_dim, int):
111
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
112
-
113
- # down
114
- output_channel = block_out_channels[0]
115
- for i, down_block_type in enumerate(down_block_types):
116
- input_channel = output_channel
117
- output_channel = block_out_channels[i]
118
- is_final_block = i == len(block_out_channels) - 1
119
-
120
- down_block = get_down_block(
121
- down_block_type,
122
- num_layers=layers_per_block,
123
- in_channels=input_channel,
124
- out_channels=output_channel,
125
- temb_channels=time_embed_dim,
126
- add_downsample=not is_final_block,
127
- resnet_eps=norm_eps,
128
- resnet_act_fn=act_fn,
129
- resnet_groups=norm_num_groups,
130
- cross_attention_dim=cross_attention_dim,
131
- attn_num_head_channels=attention_head_dim[i],
132
- downsample_padding=downsample_padding,
133
- dual_cross_attention=dual_cross_attention,
134
- use_linear_projection=use_linear_projection,
135
- only_cross_attention=only_cross_attention[i],
136
- upcast_attention=upcast_attention,
137
- resnet_time_scale_shift=resnet_time_scale_shift,
138
- )
139
- self.down_blocks.append(down_block)
140
-
141
- # mid
142
- if mid_block_type == "UNetMidBlock3DCrossAttn":
143
- self.mid_block = UNetMidBlock3DCrossAttn(
144
- in_channels=block_out_channels[-1],
145
- temb_channels=time_embed_dim,
146
- resnet_eps=norm_eps,
147
- resnet_act_fn=act_fn,
148
- output_scale_factor=mid_block_scale_factor,
149
- resnet_time_scale_shift=resnet_time_scale_shift,
150
- cross_attention_dim=cross_attention_dim,
151
- attn_num_head_channels=attention_head_dim[-1],
152
- resnet_groups=norm_num_groups,
153
- dual_cross_attention=dual_cross_attention,
154
- use_linear_projection=use_linear_projection,
155
- upcast_attention=upcast_attention,
156
- )
157
- else:
158
- raise ValueError(f"unknown mid_block_type : {mid_block_type}")
159
-
160
- # count how many layers upsample the videos
161
- self.num_upsamplers = 0
162
-
163
- # up
164
- reversed_block_out_channels = list(reversed(block_out_channels))
165
- reversed_attention_head_dim = list(reversed(attention_head_dim))
166
- only_cross_attention = list(reversed(only_cross_attention))
167
- output_channel = reversed_block_out_channels[0]
168
- for i, up_block_type in enumerate(up_block_types):
169
- is_final_block = i == len(block_out_channels) - 1
170
-
171
- prev_output_channel = output_channel
172
- output_channel = reversed_block_out_channels[i]
173
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
174
-
175
- # add upsample block for all BUT final layer
176
- if not is_final_block:
177
- add_upsample = True
178
- self.num_upsamplers += 1
179
- else:
180
- add_upsample = False
181
-
182
- up_block = get_up_block(
183
- up_block_type,
184
- num_layers=layers_per_block + 1,
185
- in_channels=input_channel,
186
- out_channels=output_channel,
187
- prev_output_channel=prev_output_channel,
188
- temb_channels=time_embed_dim,
189
- add_upsample=add_upsample,
190
- resnet_eps=norm_eps,
191
- resnet_act_fn=act_fn,
192
- resnet_groups=norm_num_groups,
193
- cross_attention_dim=cross_attention_dim,
194
- attn_num_head_channels=reversed_attention_head_dim[i],
195
- dual_cross_attention=dual_cross_attention,
196
- use_linear_projection=use_linear_projection,
197
- only_cross_attention=only_cross_attention[i],
198
- upcast_attention=upcast_attention,
199
- resnet_time_scale_shift=resnet_time_scale_shift,
200
- )
201
- self.up_blocks.append(up_block)
202
- prev_output_channel = output_channel
203
-
204
- # out
205
- self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
206
- self.conv_act = nn.SiLU()
207
- self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
208
-
209
- def set_attention_slice(self, slice_size):
210
- r"""
211
- Enable sliced attention computation.
212
-
213
- When this option is enabled, the attention module will split the input tensor in slices, to compute attention
214
- in several steps. This is useful to save some memory in exchange for a small speed decrease.
215
-
216
- Args:
217
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
218
- When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
219
- `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
220
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
221
- must be a multiple of `slice_size`.
222
- """
223
- sliceable_head_dims = []
224
-
225
- def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
226
- if hasattr(module, "set_attention_slice"):
227
- sliceable_head_dims.append(module.sliceable_head_dim)
228
-
229
- for child in module.children():
230
- fn_recursive_retrieve_slicable_dims(child)
231
-
232
- # retrieve number of attention layers
233
- for module in self.children():
234
- fn_recursive_retrieve_slicable_dims(module)
235
-
236
- num_slicable_layers = len(sliceable_head_dims)
237
-
238
- if slice_size == "auto":
239
- # half the attention head size is usually a good trade-off between
240
- # speed and memory
241
- slice_size = [dim // 2 for dim in sliceable_head_dims]
242
- elif slice_size == "max":
243
- # make smallest slice possible
244
- slice_size = num_slicable_layers * [1]
245
-
246
- slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
247
-
248
- if len(slice_size) != len(sliceable_head_dims):
249
- raise ValueError(
250
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
251
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
252
- )
253
-
254
- for i in range(len(slice_size)):
255
- size = slice_size[i]
256
- dim = sliceable_head_dims[i]
257
- if size is not None and size > dim:
258
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
259
-
260
- # Recursively walk through all the children.
261
- # Any children which exposes the set_attention_slice method
262
- # gets the message
263
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
264
- if hasattr(module, "set_attention_slice"):
265
- module.set_attention_slice(slice_size.pop())
266
-
267
- for child in module.children():
268
- fn_recursive_set_attention_slice(child, slice_size)
269
-
270
- reversed_slice_size = list(reversed(slice_size))
271
- for module in self.children():
272
- fn_recursive_set_attention_slice(module, reversed_slice_size)
273
-
274
- def _set_gradient_checkpointing(self, module, value=False):
275
- if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
276
- module.gradient_checkpointing = value
277
-
278
- def forward(
279
- self,
280
- sample: torch.FloatTensor,
281
- timestep: Union[torch.Tensor, float, int],
282
- encoder_hidden_states: torch.Tensor,
283
- class_labels: Optional[torch.Tensor] = None,
284
- attention_mask: Optional[torch.Tensor] = None,
285
- return_dict: bool = True,
286
- ) -> Union[UNet3DConditionOutput, Tuple]:
287
- r"""
288
- Args:
289
- sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
290
- timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
291
- encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
292
- return_dict (`bool`, *optional*, defaults to `True`):
293
- Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
294
-
295
- Returns:
296
- [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
297
- [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
298
- returning a tuple, the first element is the sample tensor.
299
- """
300
- # By default samples have to be AT least a multiple of the overall upsampling factor.
301
- # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
302
- # However, the upsampling interpolation output size can be forced to fit any upsampling size
303
- # on the fly if necessary.
304
- default_overall_up_factor = 2**self.num_upsamplers
305
-
306
- # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
307
- forward_upsample_size = False
308
- upsample_size = None
309
-
310
- if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
311
- logger.info("Forward upsample size to force interpolation output size.")
312
- forward_upsample_size = True
313
-
314
- # prepare attention_mask
315
- if attention_mask is not None:
316
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
317
- attention_mask = attention_mask.unsqueeze(1)
318
-
319
- # center input if necessary
320
- if self.config.center_input_sample:
321
- sample = 2 * sample - 1.0
322
-
323
- # time
324
- timesteps = timestep
325
- if not torch.is_tensor(timesteps):
326
- # This would be a good case for the `match` statement (Python 3.10+)
327
- is_mps = sample.device.type == "mps"
328
- if isinstance(timestep, float):
329
- dtype = torch.float32 if is_mps else torch.float64
330
- else:
331
- dtype = torch.int32 if is_mps else torch.int64
332
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
333
- elif len(timesteps.shape) == 0:
334
- timesteps = timesteps[None].to(sample.device)
335
-
336
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
337
- timesteps = timesteps.expand(sample.shape[0])
338
-
339
- t_emb = self.time_proj(timesteps)
340
-
341
- # timesteps does not contain any weights and will always return f32 tensors
342
- # but time_embedding might actually be running in fp16. so we need to cast here.
343
- # there might be better ways to encapsulate this.
344
- t_emb = t_emb.to(dtype=self.dtype)
345
- emb = self.time_embedding(t_emb)
346
-
347
- if self.class_embedding is not None:
348
- if class_labels is None:
349
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
350
-
351
- if self.config.class_embed_type == "timestep":
352
- class_labels = self.time_proj(class_labels)
353
-
354
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
355
- emb = emb + class_emb
356
-
357
- # pre-process
358
- sample = self.conv_in(sample)
359
-
360
- # down
361
- down_block_res_samples = (sample,)
362
- for downsample_block in self.down_blocks:
363
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
364
- sample, res_samples = downsample_block(
365
- hidden_states=sample,
366
- temb=emb,
367
- encoder_hidden_states=encoder_hidden_states,
368
- attention_mask=attention_mask,
369
- )
370
- else:
371
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
372
-
373
- down_block_res_samples += res_samples
374
-
375
- # mid
376
- sample = self.mid_block(
377
- sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
378
- )
379
-
380
- # up
381
- for i, upsample_block in enumerate(self.up_blocks):
382
- is_final_block = i == len(self.up_blocks) - 1
383
-
384
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
385
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
386
-
387
- # if we have not reached the final block and need to forward the
388
- # upsample size, we do it here
389
- if not is_final_block and forward_upsample_size:
390
- upsample_size = down_block_res_samples[-1].shape[2:]
391
-
392
- if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
393
- sample = upsample_block(
394
- hidden_states=sample,
395
- temb=emb,
396
- res_hidden_states_tuple=res_samples,
397
- encoder_hidden_states=encoder_hidden_states,
398
- upsample_size=upsample_size,
399
- attention_mask=attention_mask,
400
- )
401
- else:
402
- sample = upsample_block(
403
- hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
404
- )
405
- # post-process
406
- sample = self.conv_norm_out(sample)
407
- sample = self.conv_act(sample)
408
- sample = self.conv_out(sample)
409
-
410
- if not return_dict:
411
- return (sample,)
412
-
413
- return UNet3DConditionOutput(sample=sample)
414
-
415
- @classmethod
416
- def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
417
- if subfolder is not None:
418
- pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
419
-
420
- config_file = os.path.join(pretrained_model_path, 'config.json')
421
- if not os.path.isfile(config_file):
422
- raise RuntimeError(f"{config_file} does not exist")
423
- with open(config_file, "r") as f:
424
- config = json.load(f)
425
- config["_class_name"] = cls.__name__
426
- config["down_block_types"] = [
427
- "CrossAttnDownBlock3D",
428
- "CrossAttnDownBlock3D",
429
- "CrossAttnDownBlock3D",
430
- "DownBlock3D"
431
- ]
432
- config["up_block_types"] = [
433
- "UpBlock3D",
434
- "CrossAttnUpBlock3D",
435
- "CrossAttnUpBlock3D",
436
- "CrossAttnUpBlock3D"
437
- ]
438
-
439
- from diffusers.utils import WEIGHTS_NAME
440
- model = cls.from_config(config)
441
- model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
442
- if not os.path.isfile(model_file):
443
- raise RuntimeError(f"{model_file} does not exist")
444
- state_dict = torch.load(model_file, map_location="cpu")
445
- for k, v in model.state_dict().items():
446
- if '_temp.' in k:
447
- state_dict.update({k: v})
448
- model.load_state_dict(state_dict)
449
-
450
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/tuneavideo/models/unet_blocks.py DELETED
@@ -1,588 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
2
-
3
- import torch
4
- from torch import nn
5
-
6
- from .attention import Transformer3DModel
7
- from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
-
9
-
10
- def get_down_block(
11
- down_block_type,
12
- num_layers,
13
- in_channels,
14
- out_channels,
15
- temb_channels,
16
- add_downsample,
17
- resnet_eps,
18
- resnet_act_fn,
19
- attn_num_head_channels,
20
- resnet_groups=None,
21
- cross_attention_dim=None,
22
- downsample_padding=None,
23
- dual_cross_attention=False,
24
- use_linear_projection=False,
25
- only_cross_attention=False,
26
- upcast_attention=False,
27
- resnet_time_scale_shift="default",
28
- ):
29
- down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
30
- if down_block_type == "DownBlock3D":
31
- return DownBlock3D(
32
- num_layers=num_layers,
33
- in_channels=in_channels,
34
- out_channels=out_channels,
35
- temb_channels=temb_channels,
36
- add_downsample=add_downsample,
37
- resnet_eps=resnet_eps,
38
- resnet_act_fn=resnet_act_fn,
39
- resnet_groups=resnet_groups,
40
- downsample_padding=downsample_padding,
41
- resnet_time_scale_shift=resnet_time_scale_shift,
42
- )
43
- elif down_block_type == "CrossAttnDownBlock3D":
44
- if cross_attention_dim is None:
45
- raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
46
- return CrossAttnDownBlock3D(
47
- num_layers=num_layers,
48
- in_channels=in_channels,
49
- out_channels=out_channels,
50
- temb_channels=temb_channels,
51
- add_downsample=add_downsample,
52
- resnet_eps=resnet_eps,
53
- resnet_act_fn=resnet_act_fn,
54
- resnet_groups=resnet_groups,
55
- downsample_padding=downsample_padding,
56
- cross_attention_dim=cross_attention_dim,
57
- attn_num_head_channels=attn_num_head_channels,
58
- dual_cross_attention=dual_cross_attention,
59
- use_linear_projection=use_linear_projection,
60
- only_cross_attention=only_cross_attention,
61
- upcast_attention=upcast_attention,
62
- resnet_time_scale_shift=resnet_time_scale_shift,
63
- )
64
- raise ValueError(f"{down_block_type} does not exist.")
65
-
66
-
67
- def get_up_block(
68
- up_block_type,
69
- num_layers,
70
- in_channels,
71
- out_channels,
72
- prev_output_channel,
73
- temb_channels,
74
- add_upsample,
75
- resnet_eps,
76
- resnet_act_fn,
77
- attn_num_head_channels,
78
- resnet_groups=None,
79
- cross_attention_dim=None,
80
- dual_cross_attention=False,
81
- use_linear_projection=False,
82
- only_cross_attention=False,
83
- upcast_attention=False,
84
- resnet_time_scale_shift="default",
85
- ):
86
- up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
87
- if up_block_type == "UpBlock3D":
88
- return UpBlock3D(
89
- num_layers=num_layers,
90
- in_channels=in_channels,
91
- out_channels=out_channels,
92
- prev_output_channel=prev_output_channel,
93
- temb_channels=temb_channels,
94
- add_upsample=add_upsample,
95
- resnet_eps=resnet_eps,
96
- resnet_act_fn=resnet_act_fn,
97
- resnet_groups=resnet_groups,
98
- resnet_time_scale_shift=resnet_time_scale_shift,
99
- )
100
- elif up_block_type == "CrossAttnUpBlock3D":
101
- if cross_attention_dim is None:
102
- raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
103
- return CrossAttnUpBlock3D(
104
- num_layers=num_layers,
105
- in_channels=in_channels,
106
- out_channels=out_channels,
107
- prev_output_channel=prev_output_channel,
108
- temb_channels=temb_channels,
109
- add_upsample=add_upsample,
110
- resnet_eps=resnet_eps,
111
- resnet_act_fn=resnet_act_fn,
112
- resnet_groups=resnet_groups,
113
- cross_attention_dim=cross_attention_dim,
114
- attn_num_head_channels=attn_num_head_channels,
115
- dual_cross_attention=dual_cross_attention,
116
- use_linear_projection=use_linear_projection,
117
- only_cross_attention=only_cross_attention,
118
- upcast_attention=upcast_attention,
119
- resnet_time_scale_shift=resnet_time_scale_shift,
120
- )
121
- raise ValueError(f"{up_block_type} does not exist.")
122
-
123
-
124
- class UNetMidBlock3DCrossAttn(nn.Module):
125
- def __init__(
126
- self,
127
- in_channels: int,
128
- temb_channels: int,
129
- dropout: float = 0.0,
130
- num_layers: int = 1,
131
- resnet_eps: float = 1e-6,
132
- resnet_time_scale_shift: str = "default",
133
- resnet_act_fn: str = "swish",
134
- resnet_groups: int = 32,
135
- resnet_pre_norm: bool = True,
136
- attn_num_head_channels=1,
137
- output_scale_factor=1.0,
138
- cross_attention_dim=1280,
139
- dual_cross_attention=False,
140
- use_linear_projection=False,
141
- upcast_attention=False,
142
- ):
143
- super().__init__()
144
-
145
- self.has_cross_attention = True
146
- self.attn_num_head_channels = attn_num_head_channels
147
- resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
148
-
149
- # there is always at least one resnet
150
- resnets = [
151
- ResnetBlock3D(
152
- in_channels=in_channels,
153
- out_channels=in_channels,
154
- temb_channels=temb_channels,
155
- eps=resnet_eps,
156
- groups=resnet_groups,
157
- dropout=dropout,
158
- time_embedding_norm=resnet_time_scale_shift,
159
- non_linearity=resnet_act_fn,
160
- output_scale_factor=output_scale_factor,
161
- pre_norm=resnet_pre_norm,
162
- )
163
- ]
164
- attentions = []
165
-
166
- for _ in range(num_layers):
167
- if dual_cross_attention:
168
- raise NotImplementedError
169
- attentions.append(
170
- Transformer3DModel(
171
- attn_num_head_channels,
172
- in_channels // attn_num_head_channels,
173
- in_channels=in_channels,
174
- num_layers=1,
175
- cross_attention_dim=cross_attention_dim,
176
- norm_num_groups=resnet_groups,
177
- use_linear_projection=use_linear_projection,
178
- upcast_attention=upcast_attention,
179
- )
180
- )
181
- resnets.append(
182
- ResnetBlock3D(
183
- in_channels=in_channels,
184
- out_channels=in_channels,
185
- temb_channels=temb_channels,
186
- eps=resnet_eps,
187
- groups=resnet_groups,
188
- dropout=dropout,
189
- time_embedding_norm=resnet_time_scale_shift,
190
- non_linearity=resnet_act_fn,
191
- output_scale_factor=output_scale_factor,
192
- pre_norm=resnet_pre_norm,
193
- )
194
- )
195
-
196
- self.attentions = nn.ModuleList(attentions)
197
- self.resnets = nn.ModuleList(resnets)
198
-
199
- def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
200
- hidden_states = self.resnets[0](hidden_states, temb)
201
- for attn, resnet in zip(self.attentions, self.resnets[1:]):
202
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
203
- hidden_states = resnet(hidden_states, temb)
204
-
205
- return hidden_states
206
-
207
-
208
- class CrossAttnDownBlock3D(nn.Module):
209
- def __init__(
210
- self,
211
- in_channels: int,
212
- out_channels: int,
213
- temb_channels: int,
214
- dropout: float = 0.0,
215
- num_layers: int = 1,
216
- resnet_eps: float = 1e-6,
217
- resnet_time_scale_shift: str = "default",
218
- resnet_act_fn: str = "swish",
219
- resnet_groups: int = 32,
220
- resnet_pre_norm: bool = True,
221
- attn_num_head_channels=1,
222
- cross_attention_dim=1280,
223
- output_scale_factor=1.0,
224
- downsample_padding=1,
225
- add_downsample=True,
226
- dual_cross_attention=False,
227
- use_linear_projection=False,
228
- only_cross_attention=False,
229
- upcast_attention=False,
230
- ):
231
- super().__init__()
232
- resnets = []
233
- attentions = []
234
-
235
- self.has_cross_attention = True
236
- self.attn_num_head_channels = attn_num_head_channels
237
-
238
- for i in range(num_layers):
239
- in_channels = in_channels if i == 0 else out_channels
240
- resnets.append(
241
- ResnetBlock3D(
242
- in_channels=in_channels,
243
- out_channels=out_channels,
244
- temb_channels=temb_channels,
245
- eps=resnet_eps,
246
- groups=resnet_groups,
247
- dropout=dropout,
248
- time_embedding_norm=resnet_time_scale_shift,
249
- non_linearity=resnet_act_fn,
250
- output_scale_factor=output_scale_factor,
251
- pre_norm=resnet_pre_norm,
252
- )
253
- )
254
- if dual_cross_attention:
255
- raise NotImplementedError
256
- attentions.append(
257
- Transformer3DModel(
258
- attn_num_head_channels,
259
- out_channels // attn_num_head_channels,
260
- in_channels=out_channels,
261
- num_layers=1,
262
- cross_attention_dim=cross_attention_dim,
263
- norm_num_groups=resnet_groups,
264
- use_linear_projection=use_linear_projection,
265
- only_cross_attention=only_cross_attention,
266
- upcast_attention=upcast_attention,
267
- )
268
- )
269
- self.attentions = nn.ModuleList(attentions)
270
- self.resnets = nn.ModuleList(resnets)
271
-
272
- if add_downsample:
273
- self.downsamplers = nn.ModuleList(
274
- [
275
- Downsample3D(
276
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
277
- )
278
- ]
279
- )
280
- else:
281
- self.downsamplers = None
282
-
283
- self.gradient_checkpointing = False
284
-
285
- def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
286
- output_states = ()
287
-
288
- for resnet, attn in zip(self.resnets, self.attentions):
289
- if self.training and self.gradient_checkpointing:
290
-
291
- def create_custom_forward(module, return_dict=None):
292
- def custom_forward(*inputs):
293
- if return_dict is not None:
294
- return module(*inputs, return_dict=return_dict)
295
- else:
296
- return module(*inputs)
297
-
298
- return custom_forward
299
-
300
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
301
- hidden_states = torch.utils.checkpoint.checkpoint(
302
- create_custom_forward(attn, return_dict=False),
303
- hidden_states,
304
- encoder_hidden_states,
305
- )[0]
306
- else:
307
- hidden_states = resnet(hidden_states, temb)
308
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
309
-
310
- output_states += (hidden_states,)
311
-
312
- if self.downsamplers is not None:
313
- for downsampler in self.downsamplers:
314
- hidden_states = downsampler(hidden_states)
315
-
316
- output_states += (hidden_states,)
317
-
318
- return hidden_states, output_states
319
-
320
-
321
- class DownBlock3D(nn.Module):
322
- def __init__(
323
- self,
324
- in_channels: int,
325
- out_channels: int,
326
- temb_channels: int,
327
- dropout: float = 0.0,
328
- num_layers: int = 1,
329
- resnet_eps: float = 1e-6,
330
- resnet_time_scale_shift: str = "default",
331
- resnet_act_fn: str = "swish",
332
- resnet_groups: int = 32,
333
- resnet_pre_norm: bool = True,
334
- output_scale_factor=1.0,
335
- add_downsample=True,
336
- downsample_padding=1,
337
- ):
338
- super().__init__()
339
- resnets = []
340
-
341
- for i in range(num_layers):
342
- in_channels = in_channels if i == 0 else out_channels
343
- resnets.append(
344
- ResnetBlock3D(
345
- in_channels=in_channels,
346
- out_channels=out_channels,
347
- temb_channels=temb_channels,
348
- eps=resnet_eps,
349
- groups=resnet_groups,
350
- dropout=dropout,
351
- time_embedding_norm=resnet_time_scale_shift,
352
- non_linearity=resnet_act_fn,
353
- output_scale_factor=output_scale_factor,
354
- pre_norm=resnet_pre_norm,
355
- )
356
- )
357
-
358
- self.resnets = nn.ModuleList(resnets)
359
-
360
- if add_downsample:
361
- self.downsamplers = nn.ModuleList(
362
- [
363
- Downsample3D(
364
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
365
- )
366
- ]
367
- )
368
- else:
369
- self.downsamplers = None
370
-
371
- self.gradient_checkpointing = False
372
-
373
- def forward(self, hidden_states, temb=None):
374
- output_states = ()
375
-
376
- for resnet in self.resnets:
377
- if self.training and self.gradient_checkpointing:
378
-
379
- def create_custom_forward(module):
380
- def custom_forward(*inputs):
381
- return module(*inputs)
382
-
383
- return custom_forward
384
-
385
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
386
- else:
387
- hidden_states = resnet(hidden_states, temb)
388
-
389
- output_states += (hidden_states,)
390
-
391
- if self.downsamplers is not None:
392
- for downsampler in self.downsamplers:
393
- hidden_states = downsampler(hidden_states)
394
-
395
- output_states += (hidden_states,)
396
-
397
- return hidden_states, output_states
398
-
399
-
400
- class CrossAttnUpBlock3D(nn.Module):
401
- def __init__(
402
- self,
403
- in_channels: int,
404
- out_channels: int,
405
- prev_output_channel: int,
406
- temb_channels: int,
407
- dropout: float = 0.0,
408
- num_layers: int = 1,
409
- resnet_eps: float = 1e-6,
410
- resnet_time_scale_shift: str = "default",
411
- resnet_act_fn: str = "swish",
412
- resnet_groups: int = 32,
413
- resnet_pre_norm: bool = True,
414
- attn_num_head_channels=1,
415
- cross_attention_dim=1280,
416
- output_scale_factor=1.0,
417
- add_upsample=True,
418
- dual_cross_attention=False,
419
- use_linear_projection=False,
420
- only_cross_attention=False,
421
- upcast_attention=False,
422
- ):
423
- super().__init__()
424
- resnets = []
425
- attentions = []
426
-
427
- self.has_cross_attention = True
428
- self.attn_num_head_channels = attn_num_head_channels
429
-
430
- for i in range(num_layers):
431
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
432
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
433
-
434
- resnets.append(
435
- ResnetBlock3D(
436
- in_channels=resnet_in_channels + res_skip_channels,
437
- out_channels=out_channels,
438
- temb_channels=temb_channels,
439
- eps=resnet_eps,
440
- groups=resnet_groups,
441
- dropout=dropout,
442
- time_embedding_norm=resnet_time_scale_shift,
443
- non_linearity=resnet_act_fn,
444
- output_scale_factor=output_scale_factor,
445
- pre_norm=resnet_pre_norm,
446
- )
447
- )
448
- if dual_cross_attention:
449
- raise NotImplementedError
450
- attentions.append(
451
- Transformer3DModel(
452
- attn_num_head_channels,
453
- out_channels // attn_num_head_channels,
454
- in_channels=out_channels,
455
- num_layers=1,
456
- cross_attention_dim=cross_attention_dim,
457
- norm_num_groups=resnet_groups,
458
- use_linear_projection=use_linear_projection,
459
- only_cross_attention=only_cross_attention,
460
- upcast_attention=upcast_attention,
461
- )
462
- )
463
-
464
- self.attentions = nn.ModuleList(attentions)
465
- self.resnets = nn.ModuleList(resnets)
466
-
467
- if add_upsample:
468
- self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
469
- else:
470
- self.upsamplers = None
471
-
472
- self.gradient_checkpointing = False
473
-
474
- def forward(
475
- self,
476
- hidden_states,
477
- res_hidden_states_tuple,
478
- temb=None,
479
- encoder_hidden_states=None,
480
- upsample_size=None,
481
- attention_mask=None,
482
- ):
483
- for resnet, attn in zip(self.resnets, self.attentions):
484
- # pop res hidden states
485
- res_hidden_states = res_hidden_states_tuple[-1]
486
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
487
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
488
-
489
- if self.training and self.gradient_checkpointing:
490
-
491
- def create_custom_forward(module, return_dict=None):
492
- def custom_forward(*inputs):
493
- if return_dict is not None:
494
- return module(*inputs, return_dict=return_dict)
495
- else:
496
- return module(*inputs)
497
-
498
- return custom_forward
499
-
500
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
501
- hidden_states = torch.utils.checkpoint.checkpoint(
502
- create_custom_forward(attn, return_dict=False),
503
- hidden_states,
504
- encoder_hidden_states,
505
- )[0]
506
- else:
507
- hidden_states = resnet(hidden_states, temb)
508
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
509
-
510
- if self.upsamplers is not None:
511
- for upsampler in self.upsamplers:
512
- hidden_states = upsampler(hidden_states, upsample_size)
513
-
514
- return hidden_states
515
-
516
-
517
- class UpBlock3D(nn.Module):
518
- def __init__(
519
- self,
520
- in_channels: int,
521
- prev_output_channel: int,
522
- out_channels: int,
523
- temb_channels: int,
524
- dropout: float = 0.0,
525
- num_layers: int = 1,
526
- resnet_eps: float = 1e-6,
527
- resnet_time_scale_shift: str = "default",
528
- resnet_act_fn: str = "swish",
529
- resnet_groups: int = 32,
530
- resnet_pre_norm: bool = True,
531
- output_scale_factor=1.0,
532
- add_upsample=True,
533
- ):
534
- super().__init__()
535
- resnets = []
536
-
537
- for i in range(num_layers):
538
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
539
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
540
-
541
- resnets.append(
542
- ResnetBlock3D(
543
- in_channels=resnet_in_channels + res_skip_channels,
544
- out_channels=out_channels,
545
- temb_channels=temb_channels,
546
- eps=resnet_eps,
547
- groups=resnet_groups,
548
- dropout=dropout,
549
- time_embedding_norm=resnet_time_scale_shift,
550
- non_linearity=resnet_act_fn,
551
- output_scale_factor=output_scale_factor,
552
- pre_norm=resnet_pre_norm,
553
- )
554
- )
555
-
556
- self.resnets = nn.ModuleList(resnets)
557
-
558
- if add_upsample:
559
- self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
560
- else:
561
- self.upsamplers = None
562
-
563
- self.gradient_checkpointing = False
564
-
565
- def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
566
- for resnet in self.resnets:
567
- # pop res hidden states
568
- res_hidden_states = res_hidden_states_tuple[-1]
569
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
570
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
571
-
572
- if self.training and self.gradient_checkpointing:
573
-
574
- def create_custom_forward(module):
575
- def custom_forward(*inputs):
576
- return module(*inputs)
577
-
578
- return custom_forward
579
-
580
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
581
- else:
582
- hidden_states = resnet(hidden_states, temb)
583
-
584
- if self.upsamplers is not None:
585
- for upsampler in self.upsamplers:
586
- hidden_states = upsampler(hidden_states, upsample_size)
587
-
588
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/tuneavideo/pipelines/pipeline_tuneavideo.py DELETED
@@ -1,449 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
2
-
3
- import inspect
4
- from typing import Callable, List, Optional, Union
5
- from dataclasses import dataclass
6
-
7
- import numpy as np
8
- import torch
9
-
10
- from diffusers.utils import is_accelerate_available
11
- from packaging import version
12
- from transformers import CLIPTextModel, CLIPTokenizer
13
-
14
- from diffusers.configuration_utils import FrozenDict
15
- from diffusers.models import AutoencoderKL
16
- from diffusers.pipeline_utils import DiffusionPipeline
17
- from diffusers.schedulers import (
18
- DDIMScheduler,
19
- DPMSolverMultistepScheduler,
20
- EulerAncestralDiscreteScheduler,
21
- EulerDiscreteScheduler,
22
- LMSDiscreteScheduler,
23
- PNDMScheduler,
24
- )
25
- from diffusers.utils import deprecate, logging, BaseOutput
26
-
27
- from einops import rearrange, repeat
28
-
29
- from ..models.unet import UNet3DConditionModel
30
-
31
-
32
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
-
34
-
35
- @dataclass
36
- class TuneAVideoPipelineOutput(BaseOutput):
37
- videos: Union[torch.Tensor, np.ndarray]
38
-
39
-
40
- class TuneAVideoPipeline(DiffusionPipeline):
41
- _optional_components = []
42
-
43
- def __init__(
44
- self,
45
- vae: AutoencoderKL,
46
- text_encoder: CLIPTextModel,
47
- tokenizer: CLIPTokenizer,
48
- unet: UNet3DConditionModel,
49
- scheduler: Union[
50
- DDIMScheduler,
51
- PNDMScheduler,
52
- LMSDiscreteScheduler,
53
- EulerDiscreteScheduler,
54
- EulerAncestralDiscreteScheduler,
55
- DPMSolverMultistepScheduler,
56
- ],
57
- ):
58
- super().__init__()
59
-
60
- if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
61
- deprecation_message = (
62
- f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
63
- f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
64
- "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
65
- " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
66
- " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
67
- " file"
68
- )
69
- deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
70
- new_config = dict(scheduler.config)
71
- new_config["steps_offset"] = 1
72
- scheduler._internal_dict = FrozenDict(new_config)
73
-
74
- if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
75
- deprecation_message = (
76
- f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
77
- " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
78
- " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
79
- " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
80
- " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
81
- )
82
- deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
83
- new_config = dict(scheduler.config)
84
- new_config["clip_sample"] = False
85
- scheduler._internal_dict = FrozenDict(new_config)
86
-
87
- is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
88
- version.parse(unet.config._diffusers_version).base_version
89
- ) < version.parse("0.9.0.dev0")
90
- is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
91
- if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
92
- deprecation_message = (
93
- "The configuration file of the unet has set the default `sample_size` to smaller than"
94
- " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
95
- " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
96
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
97
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
98
- " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
99
- " in the config might lead to incorrect results in future versions. If you have downloaded this"
100
- " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
101
- " the `unet/config.json` file"
102
- )
103
- deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
104
- new_config = dict(unet.config)
105
- new_config["sample_size"] = 64
106
- unet._internal_dict = FrozenDict(new_config)
107
-
108
- self.register_modules(
109
- vae=vae,
110
- text_encoder=text_encoder,
111
- tokenizer=tokenizer,
112
- unet=unet,
113
- scheduler=scheduler,
114
- )
115
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
116
-
117
- def enable_vae_slicing(self):
118
- self.vae.enable_slicing()
119
-
120
- def disable_vae_slicing(self):
121
- self.vae.disable_slicing()
122
-
123
- def enable_sequential_cpu_offload(self, gpu_id=0):
124
- if is_accelerate_available():
125
- from accelerate import cpu_offload
126
- else:
127
- raise ImportError("Please install accelerate via `pip install accelerate`")
128
-
129
- device = torch.device(f"cuda:{gpu_id}")
130
-
131
- for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
132
- if cpu_offloaded_model is not None:
133
- cpu_offload(cpu_offloaded_model, device)
134
-
135
-
136
- @property
137
- def _execution_device(self):
138
- if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
139
- return self.device
140
- for module in self.unet.modules():
141
- if (
142
- hasattr(module, "_hf_hook")
143
- and hasattr(module._hf_hook, "execution_device")
144
- and module._hf_hook.execution_device is not None
145
- ):
146
- return torch.device(module._hf_hook.execution_device)
147
- return self.device
148
-
149
- def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
150
- batch_size = len(prompt) if isinstance(prompt, list) else 1
151
-
152
- text_inputs = self.tokenizer(
153
- prompt,
154
- padding="max_length",
155
- max_length=self.tokenizer.model_max_length,
156
- truncation=True,
157
- return_tensors="pt",
158
- )
159
- text_input_ids = text_inputs.input_ids
160
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
161
-
162
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
163
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
164
- logger.warning(
165
- "The following part of your input was truncated because CLIP can only handle sequences up to"
166
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
167
- )
168
-
169
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
170
- attention_mask = text_inputs.attention_mask.to(device)
171
- else:
172
- attention_mask = None
173
-
174
- text_embeddings = self.text_encoder(
175
- text_input_ids.to(device),
176
- attention_mask=attention_mask,
177
- )
178
- text_embeddings = text_embeddings[0]
179
-
180
- # duplicate text embeddings for each generation per prompt, using mps friendly method
181
- bs_embed, seq_len, _ = text_embeddings.shape
182
- text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
183
- text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
184
-
185
- # get unconditional embeddings for classifier free guidance
186
- if do_classifier_free_guidance:
187
- uncond_tokens: List[str]
188
- if negative_prompt is None:
189
- uncond_tokens = [""] * batch_size
190
- elif type(prompt) is not type(negative_prompt):
191
- raise TypeError(
192
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
193
- f" {type(prompt)}."
194
- )
195
- elif isinstance(negative_prompt, str):
196
- uncond_tokens = [negative_prompt]
197
- elif batch_size != len(negative_prompt):
198
- raise ValueError(
199
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
200
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
201
- " the batch size of `prompt`."
202
- )
203
- else:
204
- uncond_tokens = negative_prompt
205
-
206
- max_length = text_input_ids.shape[-1]
207
- uncond_input = self.tokenizer(
208
- uncond_tokens,
209
- padding="max_length",
210
- max_length=max_length,
211
- truncation=True,
212
- return_tensors="pt",
213
- )
214
-
215
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
216
- attention_mask = uncond_input.attention_mask.to(device)
217
- else:
218
- attention_mask = None
219
-
220
- uncond_embeddings = self.text_encoder(
221
- uncond_input.input_ids.to(device),
222
- attention_mask=attention_mask,
223
- )
224
- uncond_embeddings = uncond_embeddings[0]
225
-
226
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
227
- seq_len = uncond_embeddings.shape[1]
228
- uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
229
- uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
230
-
231
- # For classifier free guidance, we need to do two forward passes.
232
- # Here we concatenate the unconditional and text embeddings into a single batch
233
- # to avoid doing two forward passes
234
- text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
235
-
236
- return text_embeddings
237
-
238
- def decode_latents(self, latents):
239
- video_length = latents.shape[2]
240
- latents = 1 / 0.18215 * latents
241
- latents = rearrange(latents, "b c f h w -> (b f) c h w")
242
- bs = 4
243
- video_list = []
244
- for i in range(max(latents.shape[0]//bs, 1)):
245
- video = self.vae.decode(latents[i*bs:min((i+1)*bs, latents.shape[0])]).sample
246
- video = (video / 2 + 0.5).clamp(0, 1)
247
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
248
- video = video.cpu().float().numpy()
249
- video_list.append(video)
250
- if len(video_list) > 1:
251
- video = np.concatenate(video_list, axis=0)
252
- else:
253
- video = video_list[0]
254
- video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
255
- return video
256
-
257
- def prepare_extra_step_kwargs(self, generator, eta):
258
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
259
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
260
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
261
- # and should be between [0, 1]
262
-
263
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
264
- extra_step_kwargs = {}
265
- if accepts_eta:
266
- extra_step_kwargs["eta"] = eta
267
-
268
- # check if the scheduler accepts generator
269
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
270
- if accepts_generator:
271
- extra_step_kwargs["generator"] = generator
272
- return extra_step_kwargs
273
-
274
- def check_inputs(self, prompt, height, width, callback_steps):
275
- if not isinstance(prompt, str) and not isinstance(prompt, list):
276
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
277
-
278
- if height % 8 != 0 or width % 8 != 0:
279
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
280
-
281
- if (callback_steps is None) or (
282
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
283
- ):
284
- raise ValueError(
285
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
286
- f" {type(callback_steps)}."
287
- )
288
-
289
- def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
290
- shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
291
- if isinstance(generator, list) and len(generator) != batch_size:
292
- raise ValueError(
293
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
294
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
295
- )
296
-
297
- if latents is None:
298
- rand_device = "cpu" if device.type == "mps" else device
299
-
300
- if isinstance(generator, list):
301
- shape = (1,) + shape[1:]
302
- latents = [
303
- torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
304
- for i in range(batch_size)
305
- ]
306
- latents = torch.cat(latents, dim=0).to(device)
307
- else:
308
- latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
309
- else:
310
- if latents.shape != shape:
311
- # raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
312
- latents = latents.expand(shape)
313
- latents = latents.to(device)
314
-
315
- # scale the initial noise by the standard deviation required by the scheduler
316
- latents = latents * self.scheduler.init_noise_sigma
317
- return latents
318
-
319
- @torch.no_grad()
320
- def __call__(
321
- self,
322
- prompt: Union[str, List[str]],
323
- video_length: Optional[int],
324
- height: Optional[int] = 512,
325
- width: Optional[int] = 512,
326
- num_inference_steps: int = 50,
327
- guidance_scale: float = 7.5,
328
- negative_prompt: Optional[Union[str, List[str]]] = None,
329
- num_videos_per_prompt: Optional[int] = 1,
330
- eta: float = 0.0,
331
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
332
- latents: Optional[torch.FloatTensor] = None,
333
- output_type: Optional[str] = "tensor",
334
- return_dict: bool = True,
335
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
336
- callback_steps: Optional[int] = 1,
337
- uncond_embeddings_pre=None,
338
- controller=None,
339
- uncond2=False,
340
- multi=False,
341
- region=False,
342
- simple=False,
343
- **kwargs,
344
- ):
345
- # Default height and width to unet
346
- height = height or self.unet.config.sample_size * self.vae_scale_factor
347
- width = width or self.unet.config.sample_size * self.vae_scale_factor
348
-
349
- # Check inputs. Raise error if not correct
350
- self.check_inputs(prompt, height, width, callback_steps)
351
-
352
- # Define call parameters
353
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
354
- device = self._execution_device
355
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
356
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
357
- # corresponds to doing no classifier free guidance.
358
- do_classifier_free_guidance = guidance_scale > 1.0
359
-
360
- # Encode input prompt
361
- text_embeddings = self._encode_prompt(
362
- prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
363
- )
364
- if multi:
365
- text_embeddings = repeat(text_embeddings, 'b n c -> (b f) n c', f=video_length)
366
-
367
- # Prepare timesteps
368
- self.scheduler.set_timesteps(num_inference_steps, device=device)
369
- timesteps = self.scheduler.timesteps
370
-
371
- # Prepare latent variables
372
- num_channels_latents = self.unet.in_channels
373
- latents = self.prepare_latents(
374
- batch_size * num_videos_per_prompt,
375
- num_channels_latents,
376
- video_length,
377
- height,
378
- width,
379
- text_embeddings.dtype,
380
- device,
381
- generator,
382
- latents,
383
- )
384
- latents_dtype = latents.dtype
385
-
386
- # Prepare extra step kwargs.
387
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
388
-
389
- # Denoising loop
390
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
391
- with self.progress_bar(total=num_inference_steps) as progress_bar:
392
- for i, t in enumerate(timesteps):
393
- # expand the latents if we are doing classifier free guidance
394
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
395
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # torch.Size([2, 4, 8, 64, 64])
396
-
397
- if uncond_embeddings_pre is not None:
398
- if multi:
399
- text_embeddings[:video_length] = uncond_embeddings_pre[i]
400
- else:
401
- text_embeddings[0] = uncond_embeddings_pre[i] # text_embeddings: torch.Size([2, 77, 768])
402
- if region:
403
- text_embeddings[2] = uncond_embeddings_pre[i] # text_embeddings: torch.Size([2, 77, 768])
404
- if uncond2:
405
- if multi:
406
- text_embeddings[video_length: video_length*2] = uncond_embeddings_pre[i]
407
- else:
408
- text_embeddings[1] = uncond_embeddings_pre[i] # text_embeddings: torch.Size([2, 77, 768])
409
-
410
- # predict the noise residual
411
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
412
- if region:
413
- mask = controller.get_mask(latents[:-1])[1:2]
414
- noise_pred[1] = noise_pred[2]*(1-mask) + noise_pred[1]*mask
415
- # noise_pred[1] = noise_pred[2]
416
-
417
- # perform guidance
418
- if do_classifier_free_guidance:
419
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
420
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
421
- if simple:
422
- noise_pred[0] = noise_pred_text[0]
423
-
424
- # compute the previous noisy sample x_t -> x_t-1
425
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
426
-
427
- if controller is not None:
428
- latents = controller.step_callback(latents)
429
-
430
- # call the callback, if provided
431
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
432
- progress_bar.update()
433
- if callback is not None and i % callback_steps == 0:
434
- callback(i, t, latents)
435
-
436
- if region:
437
- latents = latents[:2]
438
-
439
- # Post-processing
440
- video = self.decode_latents(latents)
441
-
442
- # Convert to tensor
443
- if output_type == "tensor":
444
- video = torch.from_numpy(video)
445
-
446
- if not return_dict:
447
- return video
448
-
449
- return TuneAVideoPipelineOutput(videos=video)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Video-P2P/tuneavideo/util.py DELETED
@@ -1,84 +0,0 @@
1
- import os
2
- import imageio
3
- import numpy as np
4
- from typing import Union
5
-
6
- import torch
7
- import torchvision
8
-
9
- from tqdm import tqdm
10
- from einops import rearrange
11
-
12
-
13
- def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
14
- videos = rearrange(videos, "b c t h w -> t b c h w")
15
- outputs = []
16
- for x in videos:
17
- x = torchvision.utils.make_grid(x, nrow=n_rows)
18
- x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
19
- if rescale:
20
- x = (x + 1.0) / 2.0 # -1,1 -> 0,1
21
- x = (x * 255).numpy().astype(np.uint8)
22
- outputs.append(x)
23
-
24
- os.makedirs(os.path.dirname(path), exist_ok=True)
25
- imageio.mimsave(path, outputs, fps=fps)
26
-
27
-
28
- # DDIM Inversion
29
- @torch.no_grad()
30
- def init_prompt(prompt, pipeline):
31
- uncond_input = pipeline.tokenizer(
32
- [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
33
- return_tensors="pt"
34
- )
35
- uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
36
- text_input = pipeline.tokenizer(
37
- [prompt],
38
- padding="max_length",
39
- max_length=pipeline.tokenizer.model_max_length,
40
- truncation=True,
41
- return_tensors="pt",
42
- )
43
- text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
44
- context = torch.cat([uncond_embeddings, text_embeddings])
45
-
46
- return context
47
-
48
-
49
- def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
50
- sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
51
- timestep, next_timestep = min(
52
- timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
53
- alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
54
- alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
55
- beta_prod_t = 1 - alpha_prod_t
56
- next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
57
- next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
58
- next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
59
- return next_sample
60
-
61
-
62
- def get_noise_pred_single(latents, t, context, unet):
63
- noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
64
- return noise_pred
65
-
66
-
67
- @torch.no_grad()
68
- def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
69
- context = init_prompt(prompt, pipeline)
70
- uncond_embeddings, cond_embeddings = context.chunk(2)
71
- all_latent = [latent]
72
- latent = latent.clone().detach()
73
- for i in tqdm(range(num_inv_steps)):
74
- t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
75
- noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
76
- latent = next_step(noise_pred, t, latent, ddim_scheduler)
77
- all_latent.append(latent)
78
- return all_latent
79
-
80
-
81
- @torch.no_grad()
82
- def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
83
- ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
84
- return ddim_latents
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -14,9 +14,9 @@ from app_upload import create_upload_demo
14
  from inference import InferencePipeline
15
  from trainer import Trainer
16
 
17
- TITLE = '# [Video-P2P](https://video-p2p.github.io/) UI'
18
 
19
- ORIGINAL_SPACE_ID = 'Shaldon/Video-P2P-Demo'
20
  SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
21
  GPU_DATA = getoutput('nvidia-smi')
22
  SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
 
14
  from inference import InferencePipeline
15
  from trainer import Trainer
16
 
17
+ TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/) UI'
18
 
19
+ ORIGINAL_SPACE_ID = 'Tune-A-Video-library/Tune-A-Video-Training-UI'
20
  SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
21
  GPU_DATA = getoutput('nvidia-smi')
22
  SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
app_training.py CHANGED
@@ -23,7 +23,7 @@ def create_training_demo(trainer: Trainer,
23
  training_prompt = gr.Textbox(
24
  label='Training prompt',
25
  max_lines=1,
26
- placeholder='A rabbit is jumping on the grass')
27
  gr.Markdown('''
28
  - Upload a video and write a `Training Prompt` that describes the video.
29
  ''')
@@ -34,7 +34,7 @@ def create_training_demo(trainer: Trainer,
34
  with gr.Row():
35
  base_model = gr.Text(
36
  label='Base Model',
37
- value='CompVis/stable-diffusion-v1-5',
38
  max_lines=1)
39
  resolution = gr.Dropdown(choices=['512', '768'],
40
  value='512',
 
23
  training_prompt = gr.Textbox(
24
  label='Training prompt',
25
  max_lines=1,
26
+ placeholder='A man is surfing')
27
  gr.Markdown('''
28
  - Upload a video and write a `Training Prompt` that describes the video.
29
  ''')
 
34
  with gr.Row():
35
  base_model = gr.Text(
36
  label='Base Model',
37
+ value='CompVis/stable-diffusion-v1-4',
38
  max_lines=1)
39
  resolution = gr.Dropdown(choices=['512', '768'],
40
  value='512',
inference.py CHANGED
@@ -13,7 +13,7 @@ from diffusers.utils.import_utils import is_xformers_available
13
  from einops import rearrange
14
  from huggingface_hub import ModelCard
15
 
16
- sys.path.append('Video-P2P')
17
 
18
  from tuneavideo.models.unet import UNet3DConditionModel
19
  from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
 
13
  from einops import rearrange
14
  from huggingface_hub import ModelCard
15
 
16
+ sys.path.append('Tune-A-Video')
17
 
18
  from tuneavideo.models.unet import UNet3DConditionModel
19
  from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
requirements.txt CHANGED
@@ -17,6 +17,3 @@ torchvision==0.14.1
17
  transformers==4.26.0
18
  triton==2.0.0.dev20221202
19
  xformers==0.0.16
20
- modelcards
21
- opencv-python
22
- ipywidgets
 
17
  transformers==4.26.0
18
  triton==2.0.0.dev20221202
19
  xformers==0.0.16
 
 
 
trainer.py CHANGED
@@ -17,10 +17,10 @@ from omegaconf import OmegaConf
17
  from app_upload import ModelUploader
18
  from utils import save_model_card
19
 
20
- sys.path.append('Video-P2P')
21
 
22
- # URL_TO_JOIN_MODEL_LIBRARY_ORG = 'https://huggingface.co/organizations/Tune-A-Video-library/share/YjTcaNJmKyeHFpMBioHhzBcTzCYddVErEk'
23
- ORIGINAL_SPACE_ID = 'Shaldon/Video-P2P-Demo'
24
  SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
25
 
26
 
@@ -43,11 +43,11 @@ class Trainer:
43
  cwd=org_dir)
44
  return model_dir.as_posix()
45
 
46
- # def join_model_library_org(self, token: str) -> None:
47
- # subprocess.run(
48
- # shlex.split(
49
- # f'curl -X POST -H "Authorization: Bearer {token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
50
- # ))
51
 
52
  def run(
53
  self,
@@ -90,7 +90,7 @@ class Trainer:
90
 
91
  if not output_model_name:
92
  timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
93
- output_model_name = f'video-p2p-{timestamp}'
94
  output_model_name = slugify.slugify(output_model_name)
95
 
96
  repo_dir = pathlib.Path(__file__).parent
@@ -99,11 +99,11 @@ class Trainer:
99
  shutil.rmtree(output_dir, ignore_errors=True)
100
  output_dir.mkdir(parents=True)
101
 
102
- # if upload_to_hub:
103
- # self.join_model_library_org(
104
- # self.hf_token if self.hf_token else input_token)
105
 
106
- config = OmegaConf.load('Video-P2P/configs/man-surfing.yaml')
107
  config.pretrained_model_path = self.download_base_model(base_model)
108
  config.output_dir = output_dir.as_posix()
109
  config.train_data.video_path = training_video.name # type: ignore
@@ -133,7 +133,7 @@ class Trainer:
133
  with open(config_path, 'w') as f:
134
  OmegaConf.save(config, f)
135
 
136
- command = f'accelerate launch Video-P2P/run_tuning.py --config {config_path}'
137
  subprocess.run(shlex.split(command))
138
  save_model_card(save_dir=output_dir,
139
  base_model=base_model,
 
17
  from app_upload import ModelUploader
18
  from utils import save_model_card
19
 
20
+ sys.path.append('Tune-A-Video')
21
 
22
+ URL_TO_JOIN_MODEL_LIBRARY_ORG = 'https://huggingface.co/organizations/Tune-A-Video-library/share/YjTcaNJmKyeHFpMBioHhzBcTzCYddVErEk'
23
+ ORIGINAL_SPACE_ID = 'Tune-A-Video-library/Tune-A-Video-Training-UI'
24
  SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
25
 
26
 
 
43
  cwd=org_dir)
44
  return model_dir.as_posix()
45
 
46
+ def join_model_library_org(self, token: str) -> None:
47
+ subprocess.run(
48
+ shlex.split(
49
+ f'curl -X POST -H "Authorization: Bearer {token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
50
+ ))
51
 
52
  def run(
53
  self,
 
90
 
91
  if not output_model_name:
92
  timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
93
+ output_model_name = f'tune-a-video-{timestamp}'
94
  output_model_name = slugify.slugify(output_model_name)
95
 
96
  repo_dir = pathlib.Path(__file__).parent
 
99
  shutil.rmtree(output_dir, ignore_errors=True)
100
  output_dir.mkdir(parents=True)
101
 
102
+ if upload_to_hub:
103
+ self.join_model_library_org(
104
+ self.hf_token if self.hf_token else input_token)
105
 
106
+ config = OmegaConf.load('Tune-A-Video/configs/man-surfing.yaml')
107
  config.pretrained_model_path = self.download_base_model(base_model)
108
  config.output_dir = output_dir.as_posix()
109
  config.train_data.video_path = training_video.name # type: ignore
 
133
  with open(config_path, 'w') as f:
134
  OmegaConf.save(config, f)
135
 
136
+ command = f'accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}'
137
  subprocess.run(shlex.split(command))
138
  save_model_card(save_dir=output_dir,
139
  base_model=base_model,