victorisgeek commited on
Commit
965bd28
·
verified ·
1 Parent(s): 69a13c8

Upload 3 files

Browse files
dofaker/face_swap/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from .inswapper import InSwapper
2
+
3
+
4
+ def get_swapper_model(name='', root=None, **kwargs):
5
+ if name.lower() == 'inswapper':
6
+ return InSwapper(name=name, root=root, **kwargs)
7
+ else:
8
+ raise UserWarning('The swapper model {} not support.'.format(name))
dofaker/face_swap/base_swapper.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class BaseSwapper:
2
+
3
+ def forward(self, img, latent, *args, **kwargs):
4
+ raise NotImplementedError
5
+
6
+ def get(self,
7
+ img,
8
+ target_face,
9
+ source_face,
10
+ paste_back=True,
11
+ *args,
12
+ **kwargs):
13
+ raise NotImplementedError
dofaker/face_swap/inswapper.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import onnx
4
+ from onnx import numpy_helper
5
+
6
+ from insightface import model_zoo
7
+ from insightface.utils import face_align
8
+ from .base_swapper import BaseSwapper
9
+
10
+ from dofaker.utils import download_file, get_model_url
11
+
12
+
13
+ class InSwapper(BaseSwapper):
14
+
15
+ def __init__(self, name='inswapper', root='weights/models'):
16
+ _, model_file = download_file(get_model_url(name),
17
+ save_dir=root,
18
+ overwrite=False)
19
+ providers = model_zoo.model_zoo.get_default_providers()
20
+ self.session = model_zoo.model_zoo.PickableInferenceSession(
21
+ model_file, providers=providers)
22
+
23
+ model = onnx.load(model_file)
24
+ graph = model.graph
25
+ self.emap = numpy_helper.to_array(graph.initializer[-1])
26
+ self.input_mean = 0.0
27
+ self.input_std = 255.0
28
+
29
+ inputs = self.session.get_inputs()
30
+ self.input_names = []
31
+ for inp in inputs:
32
+ self.input_names.append(inp.name)
33
+ outputs = self.session.get_outputs()
34
+ output_names = []
35
+ for out in outputs:
36
+ output_names.append(out.name)
37
+ self.output_names = output_names
38
+ assert len(
39
+ self.output_names
40
+ ) == 1, "The output number of inswapper model should be 1, but got {}, please check your model.".format(
41
+ len(self.output_names))
42
+ output_shape = outputs[0].shape
43
+ input_cfg = inputs[0]
44
+ input_shape = input_cfg.shape
45
+ self.input_shape = input_shape
46
+ print('inswapper-shape:', self.input_shape)
47
+ self.input_size = tuple(input_shape[2:4][::-1])
48
+
49
+ def forward(self, img, latent):
50
+ img = (img - self.input_mean) / self.input_std
51
+ pred = self.session.run(self.output_names, {
52
+ self.input_names[0]: img,
53
+ self.input_names[1]: latent
54
+ })[0]
55
+ return pred
56
+
57
+ def get(self, img, target_face, source_face, paste_back=True):
58
+ aimg, M = face_align.norm_crop2(img, target_face.kps,
59
+ self.input_size[0])
60
+ blob = cv2.dnn.blobFromImage(
61
+ aimg,
62
+ 1.0 / self.input_std,
63
+ self.input_size,
64
+ (self.input_mean, self.input_mean, self.input_mean),
65
+ swapRB=True)
66
+ latent = source_face.normed_embedding.reshape((1, -1))
67
+ latent = np.dot(latent, self.emap)
68
+ latent /= np.linalg.norm(latent)
69
+ pred = self.session.run(self.output_names, {
70
+ self.input_names[0]: blob,
71
+ self.input_names[1]: latent
72
+ })[0]
73
+ img_fake = pred.transpose((0, 2, 3, 1))[0]
74
+ bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:, :, ::-1]
75
+ if not paste_back:
76
+ return bgr_fake, M
77
+ else:
78
+ target_img = img
79
+ fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
80
+ fake_diff = np.abs(fake_diff).mean(axis=2)
81
+ fake_diff[:2, :] = 0
82
+ fake_diff[-2:, :] = 0
83
+ fake_diff[:, :2] = 0
84
+ fake_diff[:, -2:] = 0
85
+ IM = cv2.invertAffineTransform(M)
86
+ img_white = np.full((aimg.shape[0], aimg.shape[1]),
87
+ 255,
88
+ dtype=np.float32)
89
+ bgr_fake = cv2.warpAffine(
90
+ bgr_fake,
91
+ IM, (target_img.shape[1], target_img.shape[0]),
92
+ borderValue=0.0)
93
+ img_white = cv2.warpAffine(
94
+ img_white,
95
+ IM, (target_img.shape[1], target_img.shape[0]),
96
+ borderValue=0.0)
97
+ fake_diff = cv2.warpAffine(
98
+ fake_diff,
99
+ IM, (target_img.shape[1], target_img.shape[0]),
100
+ borderValue=0.0)
101
+ img_white[img_white > 20] = 255
102
+ fthresh = 10
103
+ fake_diff[fake_diff < fthresh] = 0
104
+ fake_diff[fake_diff >= fthresh] = 255
105
+ img_mask = img_white
106
+ mask_h_inds, mask_w_inds = np.where(img_mask == 255)
107
+ mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
108
+ mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
109
+ mask_size = int(np.sqrt(mask_h * mask_w))
110
+ k = max(mask_size // 10, 10)
111
+ #k = max(mask_size//20, 6)
112
+ #k = 6
113
+ kernel = np.ones((k, k), np.uint8)
114
+ img_mask = cv2.erode(img_mask, kernel, iterations=1)
115
+ kernel = np.ones((2, 2), np.uint8)
116
+ fake_diff = cv2.dilate(fake_diff, kernel, iterations=1)
117
+ k = max(mask_size // 20, 5)
118
+ #k = 3
119
+ #k = 3
120
+ kernel_size = (k, k)
121
+ blur_size = tuple(2 * i + 1 for i in kernel_size)
122
+ img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
123
+ k = 5
124
+ kernel_size = (k, k)
125
+ blur_size = tuple(2 * i + 1 for i in kernel_size)
126
+ fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0)
127
+ img_mask /= 255
128
+ fake_diff /= 255
129
+ #img_mask = fake_diff
130
+ img_mask = np.reshape(img_mask,
131
+ [img_mask.shape[0], img_mask.shape[1], 1])
132
+ fake_merged = img_mask * bgr_fake + (
133
+ 1 - img_mask) * target_img.astype(np.float32)
134
+ fake_merged = fake_merged.astype(np.uint8)
135
+ return fake_merged