FaceClone2 / dofaker /pose /pose_transfer.py
victorisgeek's picture
Upload 4 files
590c25b verified
raw
history blame
4.89 kB
import cv2
import numpy as np
from scipy.ndimage.filters import gaussian_filter
from .pose_utils import _get_keypoints, _pad_image
from insightface import model_zoo
from dofaker.utils import download_file, get_model_url
from dofaker.transforms import center_crop, pad
class PoseTransfer:
def __init__(self,
name='pose_transfer',
root='weights/models',
pose_estimator=None):
assert pose_estimator is not None, "The pose_estimator of PoseTransfer shouldn't be None"
self.pose_estimator = pose_estimator
_, model_file = download_file(get_model_url(name),
save_dir=root,
overwrite=False)
providers = model_zoo.model_zoo.get_default_providers()
self.session = model_zoo.model_zoo.PickableInferenceSession(
model_file, providers=providers)
self.input_mean = 127.5
self.input_std = 127.5
inputs = self.session.get_inputs()
self.input_names = []
for inp in inputs:
self.input_names.append(inp.name)
outputs = self.session.get_outputs()
output_names = []
for out in outputs:
output_names.append(out.name)
self.output_names = output_names
assert len(
self.output_names
) == 1, "The output number of PoseTransfer model should be 1, but got {}, please check your model.".format(
len(self.output_names))
output_shape = outputs[0].shape
input_cfg = inputs[0]
input_shape = input_cfg.shape
self.input_shape = input_shape
print('pose transfer shape:', self.input_shape)
def forward(self, source_image, target_image, image_format='rgb'):
h, w, c = source_image.shape
if image_format == 'rgb':
pass
elif image_format == 'bgr':
source_image = cv2.cvtColor(source_image, cv2.COLOR_BGR2RGB)
target_image = cv2.cvtColor(target_image, cv2.COLOR_BGR2RGB)
image_format = 'rgb'
else:
raise UserWarning(
"PoseTransfer not support image format {}".format(image_format))
imgA = self._resize_and_pad_image(source_image)
kptA = self._estimate_keypoints(imgA, image_format=image_format)
mapA = self._keypoints2heatmaps(kptA)
imgB = self._resize_and_pad_image(target_image)
kptB = self._estimate_keypoints(imgB)
mapB = self._keypoints2heatmaps(kptB)
imgA_t = (imgA.astype('float32') - self.input_mean) / self.input_std
imgA_t = imgA_t.transpose([2, 0, 1])[None, ...]
mapA_t = mapA.transpose([2, 0, 1])[None, ...]
mapB_t = mapB.transpose([2, 0, 1])[None, ...]
mapAB_t = np.concatenate((mapA_t, mapB_t), axis=1)
pred = self.session.run(self.output_names, {
self.input_names[0]: imgA_t,
self.input_names[1]: mapAB_t
})[0]
target_image = pred.transpose((0, 2, 3, 1))[0]
bgr_target_image = np.clip(
self.input_std * target_image + self.input_mean, 0,
255).astype(np.uint8)[:, :, ::-1]
crop_size = (256,
min((256 * target_image.shape[1] // target_image.shape[0]),
176))
bgr_image = center_crop(bgr_target_image, crop_size)
bgr_image = cv2.resize(bgr_image, (w, h), interpolation=cv2.INTER_CUBIC)
return bgr_image
def get(self, source_image, target_image, image_format='rgb'):
return self.forward(source_image, target_image, image_format)
def _resize_and_pad_image(self, image: np.ndarray, size=256):
w = size * image.shape[1] // image.shape[0]
w_box = min(w, size * 11 // 16)
image = cv2.resize(image, (w, size), interpolation=cv2.INTER_CUBIC)
image = center_crop(image, (size, w_box))
image = pad(image,
size - w_box,
size - w_box,
size - w_box,
size - w_box,
fill=255)
image = center_crop(image, (size, size))
return image
def _estimate_keypoints(self, image: np.ndarray, image_format='rgb'):
keypoints = self.pose_estimator.get(image, image_format)
keypoints = keypoints[0] if len(keypoints) > 0 else np.zeros(
(18, 3), dtype=np.int32)
keypoints[np.where(keypoints[:, 2] == 0), :2] = -1
keypoints = keypoints[:, :2]
return keypoints
def _keypoints2heatmaps(self, keypoints, size=256):
heatmaps = np.zeros((size, size, keypoints.shape[0]), dtype=np.float32)
for k in range(keypoints.shape[0]):
x, y = keypoints[k]
if x == -1 or y == -1:
continue
heatmaps[y, x, k] = 1.0
return heatmaps