FaceClone / dofaker /face_core.py
victorisgeek's picture
Upload 3 files
b43090c verified
raw
history blame
9.46 kB
import os
import numpy as np
import cv2
from moviepy.editor import VideoFileClip
from .face_det import FaceAnalysis
from .super_resolution import BSRGAN
from dofaker.face_swap import get_swapper_model
from dofaker.face_enhance import GFPGAN
class FaceSwapper:
def __init__(self,
face_det_model='buffalo_l',
face_swap_model='inswapper',
image_sr_model='bsrgan',
face_enhance_model='gfpgan',
face_det_model_dir='weights/models',
face_swap_model_dir='weights/models',
image_sr_model_dir='weights/models',
face_enhance_model_dir='weights/models',
face_sim_thre=0.5,
log_iters=10,
use_enhancer=True,
use_sr=True,
scale=1):
self.face_sim_thre = face_sim_thre
self.log_iters = log_iters
self.det_model = FaceAnalysis(name=face_det_model,
root=face_det_model_dir)
self.det_model.prepare(ctx_id=1, det_size=(640, 640))
self.swapper_model = get_swapper_model(name=face_swap_model,
root=face_swap_model_dir)
if use_enhancer:
self.face_enhance = GFPGAN(name=face_enhance_model,
root=face_enhance_model_dir)
else:
self.face_enhance = None
if use_sr:
self.sr = BSRGAN(name=image_sr_model,
root=image_sr_model_dir,
scale=scale)
self.scale = scale
else:
self.sr = None
self.scale = scale
def run(self,
input_path: str,
dst_face_paths,
src_face_paths,
output_dir='output'):
if isinstance(dst_face_paths, str):
dst_face_paths = [dst_face_paths]
if isinstance(src_face_paths, str):
src_face_paths = [src_face_paths]
if input_path.lower().endswith(('jpg', 'jpeg', 'webp', 'png', 'bmp')):
return self.swap_image(input_path, dst_face_paths, src_face_paths,
output_dir)
else:
return self.swap_video(input_path, dst_face_paths, src_face_paths,
output_dir)
def swap_video(self,
input_video_path,
dst_face_paths,
src_face_paths,
output_dir='output'):
assert os.path.exists(
input_video_path), 'The input video path {} not exist.'
os.makedirs(output_dir, exist_ok=True)
src_faces = self.get_faces(src_face_paths)
if dst_face_paths is not None:
dst_faces = self.get_faces(dst_face_paths)
dst_face_embeddings = self.get_faces_embeddings(dst_faces)
assert len(dst_faces) == len(
src_faces
), 'The detected faces in source images not equal target image faces.'
video = cv2.VideoCapture(input_video_path)
fps = video.get(cv2.CAP_PROP_FPS)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (width, height)
print('video fps: {}, total_frames: {}, width: {}, height: {}'.format(
fps, total_frames, width, height))
video_name = os.path.basename(input_video_path).split('.')[0]
four_cc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
temp_video_path = os.path.join(output_dir,
'temp_{}.mp4'.format(video_name))
save_video_path = os.path.join(output_dir, '{}.mp4'.format(video_name))
output_video = cv2.VideoWriter(
temp_video_path, four_cc, fps,
(int(frame_size[0] * self.scale), int(frame_size[1] * self.scale)))
i = 0
while video.isOpened():
ret, frame = video.read()
if ret:
if dst_face_paths is not None:
swapped_image = self.swap_faces(frame,
dst_face_embeddings,
src_faces=src_faces)
else:
swapped_image = self.swap_all_faces(frame,
src_faces=src_faces)
i += 1
if i % self.log_iters == 0:
print('processing {}/{}'.format(i, total_frames))
output_video.write(swapped_image)
else:
break
video.release()
output_video.release()
self.add_audio_to_video(input_video_path, temp_video_path,
save_video_path)
os.remove(temp_video_path)
return save_video_path
def swap_image(self,
image_path,
dst_face_paths,
src_face_paths,
output_dir='output'):
os.makedirs(output_dir, exist_ok=True)
src_faces = self.get_faces(src_face_paths)
if dst_face_paths is not None:
dst_faces = self.get_faces(dst_face_paths)
dst_face_embeddings = self.get_faces_embeddings(dst_faces)
assert len(dst_faces) == len(
src_faces
), 'The detected faces in source images not equal target image faces.'
image = cv2.imread(image_path)
if dst_face_paths is not None:
swapped_image = self.swap_faces(image,
dst_face_embeddings,
src_faces=src_faces)
else:
swapped_image = self.swap_all_faces(image, src_faces=src_faces)
base_name = os.path.basename(image_path)
save_path = os.path.join(output_dir, base_name)
cv2.imwrite(save_path, swapped_image)
return save_path
def add_audio_to_video(self, src_video_path, target_video_path,
save_video_path):
audio = VideoFileClip(src_video_path).audio
target_video = VideoFileClip(target_video_path)
target_video = target_video.set_audio(audio)
target_video.write_videofile(save_video_path)
return target_video_path
def get_faces(self, image_paths):
if isinstance(image_paths, str):
image_paths = [image_paths]
faces = []
for image_path in image_paths:
image = cv2.imread(image_path)
assert image is not None, "the source image is None, please check your image {} format.".format(
image_path)
img_faces = self.det_model.get(image, max_num=1)
assert len(
img_faces
) == 1, 'The detected face in image {} must be 1, but got {}, please ensure your image including one face.'.format(
image_path, len(img_faces))
faces += img_faces
return faces
def swap_faces(self, image, dst_face_embeddings: np.ndarray,
src_faces: list) -> np.ndarray:
res = image.copy()
image_faces = self.det_model.get(image)
if len(image_faces) == 0:
return res
image_face_embeddings = self.get_faces_embeddings(image_faces)
sim = np.dot(dst_face_embeddings, image_face_embeddings.T)
for i in range(dst_face_embeddings.shape[0]):
index = np.where(sim[i] > self.face_sim_thre)[0].tolist()
for idx in index:
res = self.swapper_model.get(res,
image_faces[idx],
src_faces[i],
paste_back=True)
if self.face_enhance is not None:
res = self.face_enhance.get(res,
image_faces[idx],
paste_back=True)
if self.sr is not None:
res = self.sr.get(res, image_format='bgr')
return res
def swap_all_faces(self, image, src_faces: list) -> np.ndarray:
assert len(
src_faces
) == 1, 'If replace all faces in source, the number of src face should be 1, but got {}.'.format(
len(src_faces))
res = image.copy()
image_faces = self.det_model.get(image)
if len(image_faces) == 0:
return res
for image_face in image_faces:
res = self.swapper_model.get(res,
image_face,
src_faces[0],
paste_back=True)
if self.face_enhance is not None:
res = self.face_enhance.get(res, image_face, paste_back=True)
if self.sr is not None:
res = self.sr.get(res, image_format='bgr')
return res
def get_faces_embeddings(self, faces):
feats = []
for face in faces:
feats.append(face.normed_embedding)
if len(feats) == 1:
feats = np.array(feats, dtype=np.float32).reshape(1, -1)
else:
feats = np.array(feats, dtype=np.float32)
return feats