DeepSwapFace / face_swapper.py
Harisreedhar
update
71c9afb
raw
history blame
No virus
7.57 kB
import time
import torch
import onnx
import cv2
import onnxruntime
import numpy as np
from tqdm import tqdm
from onnx import numpy_helper
from skimage import transform as trans
arcface_dst = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
def estimate_norm(lmk, image_size=112, mode='arcface'):
assert lmk.shape == (5, 2)
assert image_size % 112 == 0 or image_size % 128 == 0
if image_size % 112 == 0:
ratio = float(image_size) / 112.0
diff_x = 0
else:
ratio = float(image_size) / 128.0
diff_x = 8.0 * ratio
dst = arcface_dst * ratio
dst[:, 0] += diff_x
tform = trans.SimilarityTransform()
tform.estimate(lmk, dst)
M = tform.params[0:2, :]
return M
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
M = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped, M
class Inswapper():
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']):
self.model_file = model_file
self.batch_size = batch_size
model = onnx.load(self.model_file)
graph = model.graph
self.emap = numpy_helper.to_array(graph.initializer[-1])
self.input_mean = 0.0
self.input_std = 255.0
self.session_options = onnxruntime.SessionOptions()
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers)
inputs = self.session.get_inputs()
self.input_names = [inp.name for inp in inputs]
outputs = self.session.get_outputs()
self.output_names = [out.name for out in outputs]
assert len(self.output_names) == 1
self.output_shape = outputs[0].shape
input_cfg = inputs[0]
input_shape = input_cfg.shape
self.input_shape = input_shape
self.input_size = tuple(input_shape[2:4][::-1])
def forward(self, imgs, latents):
batch_preds = []
for img, latent in zip(imgs, latents):
img = (img - self.input_mean) / self.input_std
pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
batch_preds.append(pred)
return batch_preds
def get(self, imgs, target_faces, source_faces):
batch_preds = []
batch_aimgs = []
batch_ms = []
for img, target_face, source_face in zip(imgs, target_faces, source_faces):
if isinstance(img, str):
img = cv2.imread(img)
aimg, M = norm_crop2(img, target_face.kps, self.input_size[0])
blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
(self.input_mean, self.input_mean, self.input_mean), swapRB=True)
latent = source_face.normed_embedding.reshape((1, -1))
latent = np.dot(latent, self.emap)
latent /= np.linalg.norm(latent)
pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
pred = pred.transpose((0, 2, 3, 1))[0]
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
batch_preds.append(pred)
batch_aimgs.append(aimg)
batch_ms.append(M)
return batch_preds, batch_aimgs, batch_ms
def batch_forward(self, img_list, target_f_list, source_f_list):
num_samples = len(img_list)
num_batches = (num_samples + self.batch_size - 1) // self.batch_size
preds = []
aimgs = []
ms = []
for i in tqdm(range(num_batches), desc="Swapping face by batch"):
start_idx = i * self.batch_size
end_idx = min((i + 1) * self.batch_size, num_samples)
batch_img = img_list[start_idx:end_idx]
batch_target_f = target_f_list[start_idx:end_idx]
batch_source_f = source_f_list[start_idx:end_idx]
batch_pred, batch_aimg, batch_m = self.get(batch_img, batch_target_f, batch_source_f)
preds.extend(batch_pred)
aimgs.extend(batch_aimg)
ms.extend(batch_m)
return preds, aimgs, ms
def laplacian_blending(A, B, m, num_levels=4):
assert A.shape == B.shape
assert B.shape == m.shape
height = m.shape[0]
width = m.shape[1]
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])
size = size_list[np.where(size_list > max(height, width))][0]
GA = np.zeros((size, size, 3), dtype=np.float32)
GA[:height, :width, :] = A
GB = np.zeros((size, size, 3), dtype=np.float32)
GB[:height, :width, :] = B
GM = np.zeros((size, size, 3), dtype=np.float32)
GM[:height, :width, :] = m
gpA = [GA]
gpB = [GB]
gpM = [GM]
for i in range(num_levels):
GA = cv2.pyrDown(GA)
GB = cv2.pyrDown(GB)
GM = cv2.pyrDown(GM)
gpA.append(np.float32(GA))
gpB.append(np.float32(GB))
gpM.append(np.float32(GM))
lpA = [gpA[num_levels-1]]
lpB = [gpB[num_levels-1]]
gpMr = [gpM[num_levels-1]]
for i in range(num_levels-1,0,-1):
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
lpA.append(LA)
lpB.append(LB)
gpMr.append(gpM[i-1])
LS = []
for la,lb,gm in zip(lpA,lpB,gpMr):
ls = la * gm + lb * (1.0 - gm)
LS.append(ls)
ls_ = LS[0]
for i in range(1,num_levels):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
ls_ = np.clip(ls_[:height, :width, :], 0, 255)
return ls_
def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask=(0,0,0,0)):
IM = cv2.invertAffineTransform(M)
img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32)
top = int(crop_mask[0])
bottom = int(crop_mask[1])
if top + bottom < aimg.shape[1]:
if top > 0: img_white[:top, :] = 0
if bottom > 0: img_white[-bottom:, :] = 0
left = int(crop_mask[2])
right = int(crop_mask[3])
if left + right < aimg.shape[0]:
if left > 0: img_white[:, :left] = 0
if right > 0: img_white[:, -right:] = 0
bgr_fake = cv2.warpAffine(
bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
)
img_white = cv2.warpAffine(
img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
)
img_white[img_white > 20] = 255
img_mask = img_white
mask_h_inds, mask_w_inds = np.where(img_mask == 255)
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
mask_size = int(np.sqrt(mask_h * mask_w))
k = max(mask_size // 10, 10)
img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1)
k = max(mask_size // 20, 5)
kernel_size = (k, k)
blur_size = tuple(2 * i + 1 for i in kernel_size)
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) / 255
img_mask = np.tile(np.expand_dims(img_mask, axis=-1), (1, 1, 3))
if laplacian_blend:
bgr_fake = laplacian_blending(bgr_fake.astype("float32").clip(0,255), whole_img.astype("float32").clip(0,255), img_mask.clip(0,1))
bgr_fake = bgr_fake.astype("float32")
fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32)
return fake_merged.astype("uint8")