Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,143 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
from sentence_transformers import SentenceTransformer, util
|
3 |
-
import openai
|
4 |
-
import os
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
segments = load_and_preprocess_text(filename)
|
39 |
-
|
40 |
-
def find_relevant_segment(user_query, segments):
|
41 |
-
"""
|
42 |
-
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
|
43 |
-
This version finds the best match based on the content of the query.
|
44 |
-
"""
|
45 |
-
try:
|
46 |
-
# Lowercase the query for better matching
|
47 |
-
lower_query = user_query.lower()
|
48 |
-
|
49 |
-
# Encode the query and the segments
|
50 |
-
query_embedding = retrieval_model.encode(lower_query)
|
51 |
-
segment_embeddings = retrieval_model.encode(segments)
|
52 |
-
|
53 |
-
# Compute cosine similarities between the query and the segments
|
54 |
-
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
|
55 |
-
|
56 |
-
# Find the index of the most similar segment
|
57 |
-
best_idx = similarities.argmax()
|
58 |
-
|
59 |
-
# Return the most relevant segment
|
60 |
-
return segments[best_idx]
|
61 |
-
except Exception as e:
|
62 |
-
print(f"Error in finding relevant segment: {e}")
|
63 |
-
return ""
|
64 |
-
|
65 |
-
def generate_response(user_query, relevant_segment):
|
66 |
-
"""
|
67 |
-
Generate a response emphasizing the bot's capability in providing chess information.
|
68 |
-
"""
|
69 |
-
try:
|
70 |
-
|
71 |
-
user_message = f"Here's the information on chess: {relevant_segment}"
|
72 |
-
|
73 |
-
# Append user's message to messages list
|
74 |
-
messages.append({"role": "user", "content": user_message})
|
75 |
-
|
76 |
-
response = openai.ChatCompletion.create(
|
77 |
-
model="gpt-3.5-turbo",
|
78 |
-
messages=messages,
|
79 |
-
max_tokens=150,
|
80 |
-
temperature=0.2,
|
81 |
-
top_p=1,
|
82 |
-
frequency_penalty=0,
|
83 |
-
presence_penalty=0
|
84 |
-
)
|
85 |
-
|
86 |
-
# Extract the response text
|
87 |
-
output_text = response['choices'][0]['message']['content'].strip()
|
88 |
-
|
89 |
-
# Append assistant's message to messages list for context
|
90 |
-
messages.append({"role": "assistant", "content": output_text})
|
91 |
-
|
92 |
-
return output_text
|
93 |
-
|
94 |
-
except Exception as e:
|
95 |
-
print(f"Error in generating response: {e}")
|
96 |
-
return f"Error in generating response: {e}"
|
97 |
-
|
98 |
-
def query_model(question):
|
99 |
-
"""
|
100 |
-
Process a question, find relevant information, and generate a response.
|
101 |
-
"""
|
102 |
-
if question == "":
|
103 |
-
return "Welcome to ChessBot! Ask me anything about chess rules, strategies, and terminology."
|
104 |
-
relevant_segment = find_relevant_segment(question, segments)
|
105 |
-
if not relevant_segment:
|
106 |
-
return "Could not find specific information. Please refine your question."
|
107 |
-
response = generate_response(question, relevant_segment)
|
108 |
-
return response
|
109 |
-
|
110 |
-
# Define the welcome message and specific topics the chatbot can provide information about
|
111 |
-
welcome_message = """
|
112 |
-
# ♟️ Welcome to ChessBot!
|
113 |
-
|
114 |
-
## Your AI-driven assistant for all chess-related queries. Created by SCHOLAR1, SCHOLAR2, and SCHOLAR3 of the 2024 Kode With Klossy CITY Camp.
|
115 |
-
"""
|
116 |
-
|
117 |
-
topics = """
|
118 |
-
### Feel Free to ask me anything from the topics below!
|
119 |
-
- Chess piece movements
|
120 |
-
- Special moves
|
121 |
-
- Game phases
|
122 |
-
- Common strategies
|
123 |
-
- Chess terminology
|
124 |
-
- Famous games
|
125 |
-
- Chess tactics
|
126 |
-
"""
|
127 |
-
|
128 |
-
# Setup the Gradio Blocks interface with custom layout components
|
129 |
-
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
130 |
-
gr.Markdown(welcome_message) # Display the formatted welcome message
|
131 |
-
with gr.Row():
|
132 |
-
with gr.Column():
|
133 |
-
gr.Markdown(topics) # Show the topics on the left side
|
134 |
-
with gr.Row():
|
135 |
-
with gr.Column():
|
136 |
-
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
|
137 |
-
answer = gr.Textbox(label="ChessBot Response", placeholder="ChessBot will respond here...", interactive=False, lines=10)
|
138 |
-
submit_button = gr.Button("Submit")
|
139 |
-
submit_button.click(fn=query_model, inputs=question, outputs=answer)
|
140 |
-
|
141 |
-
|
142 |
-
# Launch the Gradio app to allow user interaction
|
143 |
-
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
+
def yes_man(message, history):
|
4 |
+
if message.endswith("?"):
|
5 |
+
return "Yes"
|
6 |
+
else:
|
7 |
+
return "Ask me anything!"
|
8 |
+
|
9 |
+
gr.ChatInterface(
|
10 |
+
yes_man,
|
11 |
+
chatbot=gr.Chatbot(height=300),
|
12 |
+
textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=7),
|
13 |
+
title="Yes Man",
|
14 |
+
description="Ask Yes Man any question",
|
15 |
+
theme="soft",
|
16 |
+
examples=["Hello", "Am I cool?", "Are tomatoes vegetables?"],
|
17 |
+
cache_examples=True,
|
18 |
+
retry_btn=None,
|
19 |
+
undo_btn="Delete Previous",
|
20 |
+
clear_btn="Clear",
|
21 |
+
).launch()
|
22 |
+
|
23 |
+
# def load():
|
24 |
+
# return [
|
25 |
+
# ("Here's an audio", gr.Audio("https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav")),
|
26 |
+
# ("Here's an video", gr.Video("https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/world.mp4"))
|
27 |
+
# ]
|
28 |
+
|
29 |
+
# with gr.Blocks() as demo:
|
30 |
+
# chatbot = gr.Chatbot()
|
31 |
+
# button = gr.Button("Load audio and video")
|
32 |
+
# button.click(load, None, chatbot)
|
33 |
+
|
34 |
+
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|