climateGAN / figures /human_evaluation.py
vict0rsch's picture
initial commit from `vict0rsch/climateGAN`
ce190ee
raw
history blame
5.46 kB
"""
This script plots the result of the human evaluation on Amazon Mechanical Turk, where
human participants chose between an image from ClimateGAN or from a different method.
"""
print("Imports...", end="")
from argparse import ArgumentParser
import os
import yaml
import numpy as np
import pandas as pd
import seaborn as sns
from pathlib import Path
import matplotlib.pyplot as plt
# -----------------------
# ----- Constants -----
# -----------------------
comparables_dict = {
"munit_flooded": "MUNIT",
"cyclegan": "CycleGAN",
"instagan": "InstaGAN",
"instagan_copypaste": "Mask-InstaGAN",
"painted_ground": "Painted ground",
}
# Colors
palette_colorblind = sns.color_palette("colorblind")
color_climategan = palette_colorblind[9]
palette_colorblind = sns.color_palette("colorblind")
color_munit = palette_colorblind[1]
color_cyclegan = palette_colorblind[2]
color_instagan = palette_colorblind[3]
color_maskinstagan = palette_colorblind[6]
color_paintedground = palette_colorblind[8]
palette_comparables = [
color_munit,
color_cyclegan,
color_instagan,
color_maskinstagan,
color_paintedground,
]
palette_comparables_light = [
sns.light_palette(color, n_colors=3)[1] for color in palette_comparables
]
def parsed_args():
"""
Parse and returns command-line args
Returns:
argparse.Namespace: the parsed arguments
"""
parser = ArgumentParser()
parser.add_argument(
"--input_csv",
default="amt_omni-vs-other.csv",
type=str,
help="CSV containing the results of the human evaluation, pre-processed",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
help="Output directory",
)
parser.add_argument(
"--dpi",
default=200,
type=int,
help="DPI for the output images",
)
parser.add_argument(
"--n_bs",
default=1e6,
type=int,
help="Number of bootrstrap samples",
)
parser.add_argument(
"--bs_seed",
default=17,
type=int,
help="Bootstrap random seed, for reproducibility",
)
return parser.parse_args()
if __name__ == "__main__":
# -----------------------------
# ----- Parse arguments -----
# -----------------------------
args = parsed_args()
print("Args:\n" + "\n".join([f" {k:20}: {v}" for k, v in vars(args).items()]))
# Determine output dir
if args.output_dir is None:
output_dir = Path(os.environ["SLURM_TMPDIR"])
else:
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=False)
# Store args
output_yml = output_dir / "args_human_evaluation.yml"
with open(output_yml, "w") as f:
yaml.dump(vars(args), f)
# Read CSV
df = pd.read_csv(args.input_csv)
# Sort Y labels
comparables = df.comparable.unique()
is_climategan_sum = [
df.loc[df.comparable == c, "climategan"].sum() for c in comparables
]
comparables = comparables[np.argsort(is_climategan_sum)[::-1]]
# Plot setup
sns.set(style="whitegrid")
plt.rcParams.update({"font.family": "serif"})
plt.rcParams.update(
{
"font.serif": [
"Computer Modern Roman",
"Times New Roman",
"Utopia",
"New Century Schoolbook",
"Century Schoolbook L",
"ITC Bookman",
"Bookman",
"Times",
"Palatino",
"Charter",
"serif" "Bitstream Vera Serif",
"DejaVu Serif",
]
}
)
fontsize = "medium"
# Initialize the matplotlib figure
fig, ax = plt.subplots(figsize=(10.5, 3), dpi=args.dpi)
# Plot the total (right)
sns.barplot(
data=df.loc[df.is_valid],
x="is_valid",
y="comparable",
order=comparables,
orient="h",
label="comparable",
palette=palette_comparables_light,
ci=None,
)
# Plot the left
sns.barplot(
data=df.loc[df.is_valid],
x="climategan",
y="comparable",
order=comparables,
orient="h",
label="climategan",
color=color_climategan,
ci=99,
n_boot=args.n_bs,
seed=args.bs_seed,
errcolor="black",
errwidth=1.5,
capsize=0.1,
)
# Draw line at 0.5
y = np.arange(ax.get_ylim()[1] + 0.1, ax.get_ylim()[0], 0.1)
x = 0.5 * np.ones(y.shape[0])
ax.plot(x, y, linestyle=":", linewidth=1.5, color="black")
# Change Y-Tick labels
yticklabels = [comparables_dict[ytick.get_text()] for ytick in ax.get_yticklabels()]
yticklabels_text = ax.set_yticklabels(
yticklabels, fontsize=fontsize, horizontalalignment="right", x=0.96
)
for ytl in yticklabels_text:
ax.add_artist(ytl)
# Remove Y-label
ax.set_ylabel(ylabel="")
# Change X-Tick labels
xlim = [0.0, 1.1]
xticks = np.arange(xlim[0], xlim[1], 0.1)
ax.set(xticks=xticks)
plt.setp(ax.get_xticklabels(), fontsize=fontsize)
# Set X-label
ax.set_xlabel(None)
# Change spines
sns.despine(left=True, bottom=True)
# Save figure
output_fig = output_dir / "human_evaluation_rate_climategan.png"
fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")