climateGAN / apply_events.py
vict0rsch's picture
initial commit from `vict0rsch/climateGAN`
ce190ee
raw
history blame
20.7 kB
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-b",
"--batch_size",
type=int,
default=4,
help="Batch size to process input images to events. Defaults to 4",
)
parser.add_argument(
"-i",
"--images_paths",
type=str,
required=True,
help="Path to a directory with image files",
)
parser.add_argument(
"-o",
"--output_path",
type=str,
default=None,
help="Path to a directory were events should be written. "
+ "Will NOT write anything to disk if this flag is not used.",
)
parser.add_argument(
"-s",
"--save_input",
action="store_true",
default=False,
help="Binary flag to include the input image to the model (after crop and"
+ " resize) in the images written or uploaded (depending on saving options.)",
)
parser.add_argument(
"-r",
"--resume_path",
type=str,
default=None,
help="Path to a directory containing the trainer to resume."
+ " In particular it must contain `opts.yam` and `checkpoints/`."
+ " Typically this points to a Masker, which holds the path to a"
+ " Painter in its opts",
)
parser.add_argument(
"--no_time",
action="store_true",
default=False,
help="Binary flag to prevent the timing of operations.",
)
parser.add_argument(
"-f",
"--flood_mask_binarization",
type=float,
default=0.5,
help="Value to use to binarize masks (mask > value). "
+ "Set to -1 to use soft masks (not binarized). Defaults to 0.5.",
)
parser.add_argument(
"-t",
"--target_size",
type=int,
default=640,
help="Output image size (when not using `keep_ratio_128`): images are resized"
+ " such that their smallest side is `target_size` then cropped in the middle"
+ " of the largest side such that the resulting input image (and output images)"
+ " has height and width `target_size x target_size`. **Must** be a multiple of"
+ " 2^7=128 (up/downscaling inside the models). Defaults to 640.",
)
parser.add_argument(
"--half",
action="store_true",
default=False,
help="Binary flag to use half precision (float16). Defaults to False.",
)
parser.add_argument(
"-n",
"--n_images",
default=-1,
type=int,
help="Limit the number of images processed (if you have 100 images in "
+ "a directory but n is 10 then only the first 10 images will be loaded"
+ " for processing)",
)
parser.add_argument(
"--no_conf",
action="store_true",
default=False,
help="disable writing the apply_events hash and command in the output folder",
)
parser.add_argument(
"--overwrite",
action="store_true",
default=False,
help="Do not check for existing outdir, i.e. force overwrite"
+ " potentially existing files in the output path",
)
parser.add_argument(
"--no_cloudy",
action="store_true",
default=False,
help="Prevent the use of the cloudy intermediate"
+ " image to create the flood image. Rendering will"
+ " be more colorful but may seem less realistic",
)
parser.add_argument(
"--keep_ratio_128",
action="store_true",
default=False,
help="When loading the input images, resize and crop them in order for their "
+ "dimensions to match the closest multiples"
+ " of 128. Will force a batch size of 1 since images"
+ " now have different dimensions. "
+ "Use --max_im_width to cap the resulting dimensions.",
)
parser.add_argument(
"--fuse",
action="store_true",
default=False,
help="Use batch norm fusion to speed up inference",
)
parser.add_argument(
"--save_masks",
action="store_true",
default=False,
help="Save output masks along events",
)
parser.add_argument(
"-m",
"--max_im_width",
type=int,
default=-1,
help="When using --keep_ratio_128, some images may still be too large. Use "
+ "--max_im_width to cap the resized image's width. Defaults to -1 (no cap).",
)
parser.add_argument(
"--upload",
action="store_true",
help="Upload to comet.ml in a project called `climategan-apply`",
)
parser.add_argument(
"--zip_outdir",
"-z",
action="store_true",
help="Zip the output directory as '{outdir.parent}/{outdir.name}.zip'",
)
return parser.parse_args()
args = parse_args()
print("\n• Imports\n")
import time
import_time = time.time()
import sys
import shutil
from collections import OrderedDict
from pathlib import Path
import comet_ml # noqa: F401
import torch
import numpy as np
import skimage.io as io
from skimage.color import rgba2rgb
from skimage.transform import resize
from tqdm import tqdm
from climategan.trainer import Trainer
from climategan.bn_fusion import bn_fuse
from climategan.tutils import print_num_parameters
from climategan.utils import Timer, find_images, get_git_revision_hash, to_128, resolve
import_time = time.time() - import_time
def to_m1_p1(img, i):
"""
rescales a [0, 1] image to [-1, +1]
Args:
img (np.array): float32 numpy array of an image in [0, 1]
i (int): Index of the image being rescaled
Raises:
ValueError: If the image is not in [0, 1]
Returns:
np.array(np.float32): array in [-1, +1]
"""
if img.min() >= 0 and img.max() <= 1:
return (img.astype(np.float32) - 0.5) * 2
raise ValueError(f"Data range mismatch for image {i} : ({img.min()}, {img.max()})")
def uint8(array):
"""
convert an array to np.uint8 (does not rescale or anything else than changing dtype)
Args:
array (np.array): array to modify
Returns:
np.array(np.uint8): converted array
"""
return array.astype(np.uint8)
def resize_and_crop(img, to=640):
"""
Resizes an image so that it keeps the aspect ratio and the smallest dimensions
is `to`, then crops this resized image in its center so that the output is `to x to`
without aspect ratio distortion
Args:
img (np.array): np.uint8 255 image
Returns:
np.array: [0, 1] np.float32 image
"""
# resize keeping aspect ratio: smallest dim is 640
h, w = img.shape[:2]
if h < w:
size = (to, int(to * w / h))
else:
size = (int(to * h / w), to)
r_img = resize(img, size, preserve_range=True, anti_aliasing=True)
r_img = uint8(r_img)
# crop in the center
H, W = r_img.shape[:2]
top = (H - to) // 2
left = (W - to) // 2
rc_img = r_img[top : top + to, left : left + to, :]
return rc_img / 255.0
def print_time(text, time_series, purge=-1):
"""
Print a timeseries's mean and std with a label
Args:
text (str): label of the time series
time_series (list): list of timings
purge (int, optional): ignore first n values of time series. Defaults to -1.
"""
if not time_series:
return
if purge > 0 and len(time_series) > purge:
time_series = time_series[purge:]
m = np.mean(time_series)
s = np.std(time_series)
print(
f"{text.capitalize() + ' ':.<26} {m:.5f}"
+ (f" +/- {s:.5f}" if len(time_series) > 1 else "")
)
def print_store(store, purge=-1):
"""
Pretty-print time series store
Args:
store (dict): maps string keys to lists of times
purge (int, optional): ignore first n values of time series. Defaults to -1.
"""
singles = OrderedDict({k: v for k, v in store.items() if len(v) == 1})
multiples = OrderedDict({k: v for k, v in store.items() if len(v) > 1})
empties = {k: v for k, v in store.items() if len(v) == 0}
if empties:
print("Ignoring empty stores ", ", ".join(empties.keys()))
print()
for k in singles:
print_time(k, singles[k], purge)
print()
print("Unit: s/batch")
for k in multiples:
print_time(k, multiples[k], purge)
print()
def write_apply_config(out):
"""
Saves the args to `apply_events.py` in a text file for future reference
"""
cwd = Path.cwd().expanduser().resolve()
command = f"cd {str(cwd)}\n"
command += " ".join(sys.argv)
git_hash = get_git_revision_hash()
with (out / "command.txt").open("w") as f:
f.write(command)
with (out / "hash.txt").open("w") as f:
f.write(git_hash)
def get_outdir_name(half, keep_ratio, max_im_width, target_size, bin_value, cloudy):
"""
Create the output directory's name based on uer-provided arguments
"""
name_items = []
if half:
name_items.append("half")
if keep_ratio:
name_items.append("AR")
if max_im_width and keep_ratio:
name_items.append(f"{max_im_width}")
if target_size and not keep_ratio:
name_items.append("S")
name_items.append(f"{target_size}")
if bin_value != 0.5:
name_items.append(f"bin{bin_value}")
if not cloudy:
name_items.append("no_cloudy")
return "-".join(name_items)
def make_outdir(
outdir, overwrite, half, keep_ratio, max_im_width, target_size, bin_value, cloudy
):
"""
Creates the output directory if it does not exist. If it does exist,
prompts the user for confirmation (except if `overwrite` is True).
If the output directory's name is "_auto_" then it is created as:
outdir.parent / get_outdir_name(...)
"""
if outdir.name == "_auto_":
outdir = outdir.parent / get_outdir_name(
half, keep_ratio, max_im_width, target_size, bin_value, cloudy
)
if outdir.exists() and not overwrite:
print(
f"\nWARNING: outdir ({str(outdir)}) already exists."
+ " Files with existing names will be overwritten"
)
if "n" in input(">>> Continue anyway? [y / n] (default: y) : "):
print("Interrupting execution from user input.")
sys.exit()
print()
outdir.mkdir(exist_ok=True, parents=True)
return outdir
def get_time_stores(import_time):
return OrderedDict(
{
"imports": [import_time],
"setup": [],
"data pre-processing": [],
"encode": [],
"mask": [],
"flood": [],
"depth": [],
"segmentation": [],
"smog": [],
"wildfire": [],
"all events": [],
"numpy": [],
"inference on all images": [],
"write": [],
}
)
if __name__ == "__main__":
# -----------------------------------------
# ----- Initialize script variables -----
# -----------------------------------------
print(
"• Using args\n\n"
+ "\n".join(["{:25}: {}".format(k, v) for k, v in vars(args).items()]),
)
batch_size = args.batch_size
bin_value = args.flood_mask_binarization
cloudy = not args.no_cloudy
fuse = args.fuse
half = args.half
save_masks = args.save_masks
images_paths = resolve(args.images_paths)
keep_ratio = args.keep_ratio_128
max_im_width = args.max_im_width
n_images = args.n_images
outdir = resolve(args.output_path) if args.output_path is not None else None
resume_path = args.resume_path
target_size = args.target_size
time_inference = not args.no_time
upload = args.upload
zip_outdir = args.zip_outdir
# -------------------------------------
# ----- Validate size arguments -----
# -------------------------------------
if keep_ratio:
if target_size != 640:
print(
"\nWARNING: using --keep_ratio_128 overwrites target_size"
+ " which is ignored."
)
if batch_size != 1:
print("\nWARNING: batch_size overwritten to 1 when using keep_ratio_128")
batch_size = 1
if max_im_width > 0 and max_im_width % 128 != 0:
new_im_width = int(max_im_width / 128) * 128
print("\nWARNING: max_im_width should be <0 or a multiple of 128.")
print(
" Was {} but is now overwritten to {}".format(
max_im_width, new_im_width
)
)
max_im_width = new_im_width
else:
if target_size % 128 != 0:
print(f"\nWarning: target size {target_size} is not a multiple of 128.")
target_size = target_size - (target_size % 128)
print(f"Setting target_size to {target_size}.")
# -------------------------------------
# ----- Create output directory -----
# -------------------------------------
if outdir is not None:
outdir = make_outdir(
outdir,
args.overwrite,
half,
keep_ratio,
max_im_width,
target_size,
bin_value,
cloudy,
)
# -------------------------------
# ----- Create time store -----
# -------------------------------
stores = get_time_stores(import_time)
# -----------------------------------
# ----- Load Trainer instance -----
# -----------------------------------
with Timer(store=stores.get("setup", []), ignore=time_inference):
print("\n• Initializing trainer\n")
torch.set_grad_enabled(False)
trainer = Trainer.resume_from_path(
resume_path,
setup=True,
inference=True,
new_exp=None,
)
print()
print_num_parameters(trainer, True)
if fuse:
trainer.G = bn_fuse(trainer.G)
if half:
trainer.G.half()
# --------------------------------------------
# ----- Read data from input directory -----
# --------------------------------------------
print("\n• Reading & Pre-processing Data\n")
# find all images
data_paths = find_images(images_paths)
base_data_paths = data_paths
# filter images
if 0 < n_images < len(data_paths):
data_paths = data_paths[:n_images]
# repeat data
elif n_images > len(data_paths):
repeats = n_images // len(data_paths) + 1
data_paths = base_data_paths * repeats
data_paths = data_paths[:n_images]
with Timer(store=stores.get("data pre-processing", []), ignore=time_inference):
# read images to numpy arrays
data = [io.imread(str(d)) for d in data_paths]
# rgba to rgb
data = [im if im.shape[-1] == 3 else uint8(rgba2rgb(im) * 255) for im in data]
# resize images to target_size or
if keep_ratio:
# to closest multiples of 128 <= max_im_width, keeping aspect ratio
new_sizes = [to_128(d, max_im_width) for d in data]
data = [resize(d, ns, anti_aliasing=True) for d, ns in zip(data, new_sizes)]
else:
# to args.target_size
data = [resize_and_crop(d, target_size) for d in data]
new_sizes = [(target_size, target_size) for _ in data]
# resize() produces [0, 1] images, rescale to [-1, 1]
data = [to_m1_p1(d, i) for i, d in enumerate(data)]
n_batchs = len(data) // batch_size
if len(data) % batch_size != 0:
n_batchs += 1
print("Found", len(base_data_paths), "images. Inferring on", len(data), "images.")
# --------------------------------------------
# ----- Batch-process images to events -----
# --------------------------------------------
print(f"\n• Using device {str(trainer.device)}\n")
all_events = []
with Timer(store=stores.get("inference on all images", []), ignore=time_inference):
for b in tqdm(range(n_batchs), desc="Infering events", unit="batch"):
images = data[b * batch_size : (b + 1) * batch_size]
if not images:
continue
# concatenate images in a batch batch_size x height x width x 3
images = np.stack(images)
# Retreive numpy events as a dict {event: array[BxHxWxC]}
events = trainer.infer_all(
images,
numpy=True,
stores=stores,
bin_value=bin_value,
half=half,
cloudy=cloudy,
return_masks=save_masks,
)
# save resized and cropped image
if args.save_input:
events["input"] = uint8((images + 1) / 2 * 255)
# store events to write after inference loop
all_events.append(events)
# --------------------------------------------
# ----- Save (write/upload) inferences -----
# --------------------------------------------
if outdir is not None or upload:
if upload:
print("\n• Creating comet Experiment")
exp = comet_ml.Experiment(project_name="climategan-apply")
exp.log_parameters(vars(args))
# --------------------------------------------------------------
# ----- Change inferred data structure to a list of dicts -----
# --------------------------------------------------------------
to_write = []
events_names = list(all_events[0].keys())
for events_data in all_events:
n_ims = len(events_data[events_names[0]])
for i in range(n_ims):
item = {event: events_data[event][i] for event in events_names}
to_write.append(item)
progress_bar_desc = ""
if outdir is not None:
print("\n• Output directory:\n")
print(str(outdir), "\n")
if upload:
progress_bar_desc = "Writing & Uploading events"
else:
progress_bar_desc = "Writing events"
else:
if upload:
progress_bar_desc = "Uploading events"
# ------------------------------------
# ----- Save individual images -----
# ------------------------------------
with Timer(store=stores.get("write", []), ignore=time_inference):
# for each image
for t, event_dict in tqdm(
enumerate(to_write),
desc=progress_bar_desc,
unit="input image",
total=len(to_write),
):
idx = t % len(base_data_paths)
stem = Path(data_paths[idx]).stem
width = new_sizes[idx][1]
if keep_ratio:
ar = "_AR"
else:
ar = ""
# for each event type
event_bar = tqdm(
enumerate(event_dict.items()),
leave=False,
total=len(events_names),
unit="event",
)
for e, (event, im_data) in event_bar:
event_bar.set_description(
f" {event.capitalize():<{len(progress_bar_desc) - 2}}"
)
if args.no_cloudy:
suffix = ar + "_no_cloudy"
else:
suffix = ar
im_path = Path(f"{stem}_{event}_{width}{suffix}.png")
if outdir is not None:
im_path = outdir / im_path
io.imsave(im_path, im_data)
if upload:
exp.log_image(im_data, name=im_path.name)
if zip_outdir:
print("\n• Zipping output directory... ", end="", flush=True)
archive_path = Path(shutil.make_archive(outdir.name, "zip", root_dir=outdir))
archive_path = archive_path.rename(outdir.parent / archive_path.name)
print("Done:\n")
print(str(archive_path))
# ---------------------------
# ----- Print timings -----
# ---------------------------
if time_inference:
print("\n• Timings\n")
print_store(stores)
# ---------------------------------------------
# ----- Save apply_events.py run config -----
# ---------------------------------------------
if not args.no_conf and outdir is not None:
write_apply_config(outdir)