Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Query
|
| 2 |
+
from transformers import CLIPModel, CLIPProcessor
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Initialize FastAPI
|
| 6 |
+
app = FastAPI()
|
| 7 |
+
|
| 8 |
+
# Load CLIP model and processor from Hugging Face
|
| 9 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 10 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 11 |
+
|
| 12 |
+
# Load and process document
|
| 13 |
+
with open("test.txt", "r", encoding="utf-8") as f:
|
| 14 |
+
sentences = [line.strip() for line in f if line.strip()]
|
| 15 |
+
|
| 16 |
+
# Encode document sentences
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
sentence_inputs = processor(text=sentences, return_tensors="pt", padding=True, truncation=True)
|
| 19 |
+
sentence_embeddings = model.get_text_features(**sentence_inputs)
|
| 20 |
+
|
| 21 |
+
@app.get("/")
|
| 22 |
+
def welcome():
|
| 23 |
+
return {"message": "CLIP-based Document Retrieval Service is Running!"}
|
| 24 |
+
|
| 25 |
+
@app.get("/search")
|
| 26 |
+
def search(text: str = Query(..., description="Enter your query"), top_k: int = 5):
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
query_inputs = processor(text=[text], return_tensors="pt", padding=True, truncation=True)
|
| 29 |
+
query_embedding = model.get_text_features(**query_inputs)
|
| 30 |
+
|
| 31 |
+
# Compute cosine similarity
|
| 32 |
+
scores = torch.nn.functional.cosine_similarity(query_embedding, sentence_embeddings)[0]
|
| 33 |
+
top_indices = torch.topk(scores, k=top_k).indices
|
| 34 |
+
|
| 35 |
+
results = [{
|
| 36 |
+
"matched_sentence": sentences[i],
|
| 37 |
+
"similarity_score": round(scores[i].item(), 3)
|
| 38 |
+
} for i in top_indices]
|
| 39 |
+
|
| 40 |
+
return {
|
| 41 |
+
"query": text,
|
| 42 |
+
"top_matches": results
|
| 43 |
+
}
|