Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Dockerfile +17 -0
- main.py +174 -0
- requirements.txt +11 -0
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use the official Python 3.12 image
|
| 2 |
+
FROM python:3.12
|
| 3 |
+
|
| 4 |
+
# Set the working directory to /app
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Copy the current directory contents into the container at /app
|
| 8 |
+
COPY . /app
|
| 9 |
+
|
| 10 |
+
# Install any needed packages specified in requirements.txt
|
| 11 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 12 |
+
|
| 13 |
+
# Make port 7860 available to the world outside this container
|
| 14 |
+
EXPOSE 7860
|
| 15 |
+
|
| 16 |
+
# Run main.py when the container launches
|
| 17 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, Depends
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from typing import List
|
| 4 |
+
import os
|
| 5 |
+
import aiofiles
|
| 6 |
+
import uuid
|
| 7 |
+
import shutil
|
| 8 |
+
|
| 9 |
+
# from dotenv import load_dotenv
|
| 10 |
+
|
| 11 |
+
from langchain_community.document_loaders import TextLoader, Docx2txtLoader, PyPDFLoader
|
| 12 |
+
from langchain.prompts import ChatPromptTemplate, PromptTemplate
|
| 13 |
+
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
| 14 |
+
from langchain_community.document_loaders.csv_loader import CSVLoader
|
| 15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 16 |
+
from langchain.memory import ConversationBufferMemory
|
| 17 |
+
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 18 |
+
from langchain_community.vectorstores import Chroma
|
| 19 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 20 |
+
|
| 21 |
+
# load_dotenv()
|
| 22 |
+
|
| 23 |
+
app = FastAPI()
|
| 24 |
+
|
| 25 |
+
origins = ["https://viboognesh-react-chat.static.hf.space"]
|
| 26 |
+
|
| 27 |
+
app.add_middleware(
|
| 28 |
+
CORSMiddleware,
|
| 29 |
+
allow_origins=origins,
|
| 30 |
+
allow_credentials=True,
|
| 31 |
+
allow_methods=["GET", "POST"],
|
| 32 |
+
allow_headers=["*"],
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class ConversationChainManager:
|
| 37 |
+
def __init__(self):
|
| 38 |
+
self.conversation_chain = None
|
| 39 |
+
self.llm_model = ChatOpenAI()
|
| 40 |
+
self.embeddings = OpenAIEmbeddings()
|
| 41 |
+
|
| 42 |
+
def create_conversational_chain(self, file_paths: List[str], session_id: str):
|
| 43 |
+
docs = self.get_docs(file_paths)
|
| 44 |
+
memory = ConversationBufferMemory(
|
| 45 |
+
memory_key="chat_history", return_messages=True
|
| 46 |
+
)
|
| 47 |
+
vectordb = Chroma.from_documents(
|
| 48 |
+
docs,
|
| 49 |
+
self.embeddings,
|
| 50 |
+
collection_name=session_id,
|
| 51 |
+
persist_directory="./chroma_db",
|
| 52 |
+
)
|
| 53 |
+
retriever = vectordb.as_retriever()
|
| 54 |
+
self.conversation_chain = ConversationalRetrievalChain.from_llm(
|
| 55 |
+
llm=self.llm_model,
|
| 56 |
+
retriever=retriever,
|
| 57 |
+
condense_question_prompt=self.get_question_generator_prompt(),
|
| 58 |
+
combine_docs_chain_kwargs={
|
| 59 |
+
"document_prompt": self.get_document_prompt(),
|
| 60 |
+
"prompt": self.get_final_prompt(),
|
| 61 |
+
},
|
| 62 |
+
memory=memory,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
@staticmethod
|
| 66 |
+
def get_docs(file_paths: List[str]) -> List:
|
| 67 |
+
docs = []
|
| 68 |
+
for file_path in file_paths:
|
| 69 |
+
if file_path.endswith(".txt"):
|
| 70 |
+
loader = TextLoader(file_path)
|
| 71 |
+
document = loader.load()
|
| 72 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 73 |
+
chunk_size=1000, chunk_overlap=100
|
| 74 |
+
)
|
| 75 |
+
txt_documents = splitter.split_documents(document)
|
| 76 |
+
docs.extend(txt_documents)
|
| 77 |
+
elif file_path.endswith(".csv"):
|
| 78 |
+
loader = CSVLoader(file_path)
|
| 79 |
+
csv_documents = loader.load()
|
| 80 |
+
docs.extend(csv_documents)
|
| 81 |
+
elif file_path.endswith(".docx"):
|
| 82 |
+
loader = Docx2txtLoader(file_path)
|
| 83 |
+
document = loader.load()
|
| 84 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 85 |
+
chunk_size=1000, chunk_overlap=100
|
| 86 |
+
)
|
| 87 |
+
docx_documents = splitter.split_documents(document)
|
| 88 |
+
docs.extend(docx_documents)
|
| 89 |
+
elif file_path.endswith(".pdf"):
|
| 90 |
+
loader = PyPDFLoader(file_path)
|
| 91 |
+
pdf_documents = loader.load_and_split()
|
| 92 |
+
docs.extend(pdf_documents)
|
| 93 |
+
return docs
|
| 94 |
+
|
| 95 |
+
@staticmethod
|
| 96 |
+
def get_document_prompt() -> PromptTemplate:
|
| 97 |
+
document_template = """Document Content:{page_content}
|
| 98 |
+
Document Path: {source}"""
|
| 99 |
+
return PromptTemplate(
|
| 100 |
+
input_variables=["page_content", "source"],
|
| 101 |
+
template=document_template,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
@staticmethod
|
| 105 |
+
def get_question_generator_prompt() -> PromptTemplate:
|
| 106 |
+
question_generator_template = """Combine the chat history and follow up question into
|
| 107 |
+
a standalone question.\n Chat History: {chat_history}\n
|
| 108 |
+
Follow up question: {question}
|
| 109 |
+
"""
|
| 110 |
+
return PromptTemplate.from_template(question_generator_template)
|
| 111 |
+
|
| 112 |
+
@staticmethod
|
| 113 |
+
def get_final_prompt() -> ChatPromptTemplate:
|
| 114 |
+
final_prompt_template = """Answer question based on the context and chat_history.
|
| 115 |
+
If you cannot find answers, ask more related questions from the user.
|
| 116 |
+
Use only the basename of the file path as name of the documents.
|
| 117 |
+
Mention document name of the documents you used in your answer.
|
| 118 |
+
|
| 119 |
+
context:
|
| 120 |
+
{context}
|
| 121 |
+
|
| 122 |
+
chat_history:
|
| 123 |
+
{chat_history}
|
| 124 |
+
|
| 125 |
+
question:
|
| 126 |
+
{question}
|
| 127 |
+
|
| 128 |
+
Answer:
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
messages = [
|
| 132 |
+
SystemMessagePromptTemplate.from_template(final_prompt_template),
|
| 133 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
return ChatPromptTemplate.from_messages(messages)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@app.post("/upload_files/")
|
| 140 |
+
async def upload_files(
|
| 141 |
+
files: List[UploadFile] = File(...),
|
| 142 |
+
conversation_chain_manager: ConversationChainManager = Depends(),
|
| 143 |
+
):
|
| 144 |
+
session_id = str(uuid.uuid4())
|
| 145 |
+
session_folder = f"uploads/{session_id}"
|
| 146 |
+
os.makedirs(session_folder, exist_ok=True)
|
| 147 |
+
file_paths = []
|
| 148 |
+
for file in files:
|
| 149 |
+
file_path = f"{session_folder}/{file.filename}"
|
| 150 |
+
async with aiofiles.open(file_path, "wb") as out_file:
|
| 151 |
+
content = await file.read()
|
| 152 |
+
await out_file.write(content)
|
| 153 |
+
file_paths.append(file_path)
|
| 154 |
+
|
| 155 |
+
conversation_chain_manager.create_conversational_chain(file_paths, session_id)
|
| 156 |
+
shutil.rmtree(session_folder)
|
| 157 |
+
print("conversational_chain_manager created")
|
| 158 |
+
return {"message": "ConversationalRetrievalChain is created. Please ask questions."}
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
@app.get("/predict/")
|
| 162 |
+
async def predict(
|
| 163 |
+
query: str, conversation_chain_manager: ConversationChainManager = Depends()
|
| 164 |
+
):
|
| 165 |
+
if conversation_chain_manager.conversation_chain is None:
|
| 166 |
+
system_prompt = "Answer the question and also ask the user to upload files to ask questions from the files.\n"
|
| 167 |
+
response = conversation_chain_manager.llm_model.invoke(system_prompt + query)
|
| 168 |
+
answer = response.content
|
| 169 |
+
else:
|
| 170 |
+
response = conversation_chain_manager.conversation_chain.invoke(query)
|
| 171 |
+
answer = response["answer"]
|
| 172 |
+
|
| 173 |
+
print("predict called")
|
| 174 |
+
return {"answer": answer}
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
sqlalchemy
|
| 4 |
+
langchain_community
|
| 5 |
+
langchain
|
| 6 |
+
pypdf
|
| 7 |
+
langchain_openai
|
| 8 |
+
python-dotenv
|
| 9 |
+
python-multipart
|
| 10 |
+
chromadb
|
| 11 |
+
aiofiles
|