Spaces:
Configuration error
Configuration error
Embedding class fix: neighbors bug, added max_n neighbors, typing, etc.
Browse files- app.py +12 -3
- data/.gitignore +2 -0
- interfaces/.gitignore +1 -0
- interfaces/interface_WordExplorer.py +10 -4
- modules/.gitignore +1 -0
- modules/model_embbeding.py +135 -40
- modules/module_WordExplorer.py +6 -3
- modules/module_connection.py +1 -1
app.py
CHANGED
@@ -4,26 +4,34 @@ import pandas as pd
|
|
4 |
|
5 |
|
6 |
# --- Imports modules ---
|
7 |
-
from modules.model_embbeding import Embedding
|
|
|
8 |
|
9 |
# --- Imports interfaces ---
|
10 |
-
from interfaces.interface_WordExplorer import interface as wordExplorer_interface
|
11 |
from interfaces.interface_BiasWordExplorer import interface as biasWordExplorer_interface
|
12 |
|
|
|
13 |
# --- Tool config ---
|
14 |
AVAILABLE_LOGS = True # [True | False]
|
15 |
LANGUAGE = "spanish" # [spanish | english]
|
16 |
EMBEDDINGS_PATH = "data/fasttext-sbwc.100k.vec"
|
|
|
|
|
17 |
|
18 |
# --- Init classes ---
|
19 |
embedding = Embedding(
|
20 |
path=EMBEDDINGS_PATH,
|
21 |
binary=EMBEDDINGS_PATH.endswith('.bin'),
|
22 |
limit=None,
|
23 |
-
randomizedPCA=False
|
|
|
24 |
)
|
|
|
|
|
25 |
labels = pd.read_json(f"language/{LANGUAGE}.json")["app"]
|
26 |
|
|
|
27 |
# --- Main App ---
|
28 |
INTERFACE_LIST = [
|
29 |
biasWordExplorer_interface(
|
@@ -33,6 +41,7 @@ INTERFACE_LIST = [
|
|
33 |
wordExplorer_interface(
|
34 |
embedding=embedding,
|
35 |
available_logs=AVAILABLE_LOGS,
|
|
|
36 |
lang=LANGUAGE),
|
37 |
]
|
38 |
|
|
|
4 |
|
5 |
|
6 |
# --- Imports modules ---
|
7 |
+
from modules.model_embbeding import Embedding # Fix and Updated
|
8 |
+
|
9 |
|
10 |
# --- Imports interfaces ---
|
11 |
+
from interfaces.interface_WordExplorer import interface as wordExplorer_interface # Updated
|
12 |
from interfaces.interface_BiasWordExplorer import interface as biasWordExplorer_interface
|
13 |
|
14 |
+
|
15 |
# --- Tool config ---
|
16 |
AVAILABLE_LOGS = True # [True | False]
|
17 |
LANGUAGE = "spanish" # [spanish | english]
|
18 |
EMBEDDINGS_PATH = "data/fasttext-sbwc.100k.vec"
|
19 |
+
MAX_NEIGHBORS = 20 # Updated
|
20 |
+
|
21 |
|
22 |
# --- Init classes ---
|
23 |
embedding = Embedding(
|
24 |
path=EMBEDDINGS_PATH,
|
25 |
binary=EMBEDDINGS_PATH.endswith('.bin'),
|
26 |
limit=None,
|
27 |
+
randomizedPCA=False,
|
28 |
+
max_neighbors=MAX_NEIGHBORS # Updated
|
29 |
)
|
30 |
+
|
31 |
+
# --- Init Vars ---
|
32 |
labels = pd.read_json(f"language/{LANGUAGE}.json")["app"]
|
33 |
|
34 |
+
|
35 |
# --- Main App ---
|
36 |
INTERFACE_LIST = [
|
37 |
biasWordExplorer_interface(
|
|
|
41 |
wordExplorer_interface(
|
42 |
embedding=embedding,
|
43 |
available_logs=AVAILABLE_LOGS,
|
44 |
+
max_neighbors=MAX_NEIGHBORS, # Updated
|
45 |
lang=LANGUAGE),
|
46 |
]
|
47 |
|
data/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
data_loader.py
|
interfaces/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
interfaces/interface_WordExplorer.py
CHANGED
@@ -3,13 +3,19 @@ import pandas as pd
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
|
5 |
from tool_info import TOOL_INFO
|
6 |
-
from modules.module_connection import WordExplorerConnector
|
7 |
from modules.module_logsManager import HuggingFaceDatasetSaver
|
8 |
from examples.examples import examples_explorar_relaciones_entre_palabras
|
9 |
|
10 |
plt.rcParams.update({'font.size': 14})
|
11 |
|
12 |
-
def interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# --- Init logs ---
|
14 |
log_callback = HuggingFaceDatasetSaver(
|
15 |
available_logs=available_logs
|
@@ -53,10 +59,10 @@ def interface(embedding, available_logs, lang="spanish"):
|
|
53 |
with gr.Row():
|
54 |
with gr.Row():
|
55 |
gr.Markdown(labels["plotNeighbours"]["title"])
|
56 |
-
n_neighbors = gr.Slider(minimum=0,maximum=
|
57 |
with gr.Row():
|
58 |
alpha = gr.Slider(minimum=0.1,maximum=0.9, value=0.3, step=0.1,label=labels["options"]["transparency"])
|
59 |
-
fontsize=gr.Number(value=
|
60 |
with gr.Row():
|
61 |
btn_plot = gr.Button(labels["plot_button"])
|
62 |
with gr.Row():
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
|
5 |
from tool_info import TOOL_INFO
|
6 |
+
from modules.module_connection import WordExplorerConnector # Updated
|
7 |
from modules.module_logsManager import HuggingFaceDatasetSaver
|
8 |
from examples.examples import examples_explorar_relaciones_entre_palabras
|
9 |
|
10 |
plt.rcParams.update({'font.size': 14})
|
11 |
|
12 |
+
def interface(
|
13 |
+
embedding,
|
14 |
+
available_logs: bool,
|
15 |
+
max_neighbors: int, # Updated
|
16 |
+
lang: str="spanish",
|
17 |
+
) -> gr.Blocks:
|
18 |
+
|
19 |
# --- Init logs ---
|
20 |
log_callback = HuggingFaceDatasetSaver(
|
21 |
available_logs=available_logs
|
|
|
59 |
with gr.Row():
|
60 |
with gr.Row():
|
61 |
gr.Markdown(labels["plotNeighbours"]["title"])
|
62 |
+
n_neighbors = gr.Slider(minimum=0,maximum=max_neighbors,step=1,label=labels["plotNeighbours"]["quantity"])
|
63 |
with gr.Row():
|
64 |
alpha = gr.Slider(minimum=0.1,maximum=0.9, value=0.3, step=0.1,label=labels["options"]["transparency"])
|
65 |
+
fontsize=gr.Number(value=25, label=labels["options"]["font-size"])
|
66 |
with gr.Row():
|
67 |
btn_plot = gr.Button(labels["plot_button"])
|
68 |
with gr.Row():
|
modules/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
modules/model_embbeding.py
CHANGED
@@ -1,58 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import operator
|
3 |
-
import numpy as np
|
4 |
import pandas as pd
|
|
|
|
|
5 |
from numpy import dot
|
6 |
from gensim import matutils
|
7 |
-
from modules.module_ann import Ann
|
8 |
-
from memory_profiler import profile
|
9 |
-
from sklearn.neighbors import NearestNeighbors
|
10 |
-
from data.data_loader import load_embeddings
|
11 |
|
12 |
|
13 |
class Embedding:
|
14 |
@profile
|
15 |
-
def __init__(self,
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
self.path = path
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
self.ds = None
|
21 |
|
22 |
-
#
|
23 |
-
self.
|
24 |
-
|
25 |
-
# Estimate AproximateNearestNeighbors
|
26 |
-
self.ann = None
|
27 |
|
28 |
# Load embedding and pca dataset
|
29 |
-
self.__load(
|
30 |
|
31 |
-
def
|
32 |
-
|
|
|
33 |
|
34 |
-
def __load(self, binary, limit, randomizedPCA):
|
35 |
print(f"Preparing {os.path.basename(self.path)} embeddings...")
|
36 |
|
37 |
# --- Prepare dataset ---
|
38 |
-
self.ds =
|
39 |
-
|
40 |
-
|
41 |
-
self.embedding = self.ds['embedding'].to_list()
|
42 |
|
43 |
-
# ---
|
|
|
44 |
self.ann = Ann(
|
45 |
words=self.ds['word'],
|
46 |
vectors=self.ds['embedding'],
|
47 |
coord=self.ds['pca']
|
48 |
)
|
49 |
-
self.ann.init(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
def __getValue(
|
|
|
|
|
|
|
|
|
56 |
word_id, value = None, None
|
57 |
|
58 |
if word in self:
|
@@ -63,30 +132,56 @@ class Embedding:
|
|
63 |
|
64 |
return value
|
65 |
|
66 |
-
def getEmbedding(
|
|
|
|
|
|
|
|
|
67 |
return self.__getValue(word, 'embedding')
|
68 |
|
69 |
-
def getPCA(
|
|
|
|
|
|
|
|
|
70 |
return self.__getValue(word, 'pca')
|
71 |
|
72 |
-
def
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
80 |
if nn_method == 'ann':
|
81 |
words = self.ann.get(word, n_neighbors)
|
|
|
82 |
elif nn_method == 'sklearn':
|
83 |
-
word_emb = self.getEmbedding(word)
|
84 |
-
|
85 |
-
words = operator.itemgetter(*
|
86 |
else:
|
87 |
words = []
|
88 |
return words
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
def getCosineSimilarities(self, w1, w2):
|
91 |
return dot(
|
92 |
matutils.unitvec(self.getEmbedding(w1)),
|
|
|
1 |
+
from modules.module_ann import Ann
|
2 |
+
from memory_profiler import profile
|
3 |
+
from sklearn.neighbors import NearestNeighbors
|
4 |
+
from sklearn.decomposition import PCA
|
5 |
+
from gensim.models import KeyedVectors
|
6 |
+
from typing import List
|
7 |
import os
|
8 |
import operator
|
|
|
9 |
import pandas as pd
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
from numpy import dot
|
13 |
from gensim import matutils
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
class Embedding:
|
17 |
@profile
|
18 |
+
def __init__(self,
|
19 |
+
path: str,
|
20 |
+
binary: bool,
|
21 |
+
limit: int=None,
|
22 |
+
randomizedPCA: bool=False,
|
23 |
+
max_neighbors: int=20
|
24 |
+
) -> None:
|
25 |
+
|
26 |
+
# Embedding vars
|
27 |
self.path = path
|
28 |
+
self.limit = limit
|
29 |
+
self.randomizedPCA = randomizedPCA
|
30 |
+
self.binary = binary
|
31 |
+
self.max_neighbors = max_neighbors
|
32 |
|
33 |
+
# Full embedding dataset
|
34 |
self.ds = None
|
35 |
|
36 |
+
# Estimate NearestNeighbors
|
37 |
+
self.ann = None # Aproximate with Annoy method
|
38 |
+
self.neigh = None # Exact with Sklearn method
|
|
|
|
|
39 |
|
40 |
# Load embedding and pca dataset
|
41 |
+
self.__load()
|
42 |
|
43 |
+
def __load(
|
44 |
+
self,
|
45 |
+
) -> None:
|
46 |
|
|
|
47 |
print(f"Preparing {os.path.basename(self.path)} embeddings...")
|
48 |
|
49 |
# --- Prepare dataset ---
|
50 |
+
self.ds = self.__preparate(
|
51 |
+
self.path, self.binary, self.limit, self.randomizedPCA
|
52 |
+
)
|
|
|
53 |
|
54 |
+
# --- Estimate Nearest Neighbors
|
55 |
+
# Method A: Througth annoy using forest tree
|
56 |
self.ann = Ann(
|
57 |
words=self.ds['word'],
|
58 |
vectors=self.ds['embedding'],
|
59 |
coord=self.ds['pca']
|
60 |
)
|
61 |
+
self.ann.init(
|
62 |
+
n_trees=20, metric='dot', n_jobs=-1
|
63 |
+
)
|
64 |
+
|
65 |
+
# Method B: Througth Sklearn method
|
66 |
+
self.neigh = NearestNeighbors(
|
67 |
+
n_neighbors=self.max_neighbors
|
68 |
+
)
|
69 |
+
self.neigh.fit(
|
70 |
+
X=self.ds['embedding'].to_list()
|
71 |
+
)
|
72 |
+
|
73 |
+
def __preparate(
|
74 |
+
self,
|
75 |
+
path: str,
|
76 |
+
binary: bool,
|
77 |
+
limit: int,
|
78 |
+
randomizedPCA: bool
|
79 |
+
) -> pd.DataFrame:
|
80 |
+
|
81 |
+
if randomizedPCA:
|
82 |
+
pca = PCA(
|
83 |
+
n_components=2,
|
84 |
+
copy=False,
|
85 |
+
whiten=False,
|
86 |
+
svd_solver='randomized',
|
87 |
+
iterated_power='auto'
|
88 |
+
)
|
89 |
+
|
90 |
+
else:
|
91 |
+
pca = PCA(
|
92 |
+
n_components=2
|
93 |
+
)
|
94 |
+
|
95 |
+
print("--------> PATH:", path)
|
96 |
+
model = KeyedVectors.load_word2vec_format(
|
97 |
+
fname=path,
|
98 |
+
binary=binary,
|
99 |
+
limit=limit
|
100 |
+
)
|
101 |
+
|
102 |
+
# Cased Vocab
|
103 |
+
cased_words = model.index_to_key
|
104 |
+
cased_emb = model.get_normed_vectors()
|
105 |
+
cased_pca = pca.fit_transform(cased_emb)
|
106 |
+
|
107 |
+
df_cased = pd.DataFrame(
|
108 |
+
zip(
|
109 |
+
cased_words,
|
110 |
+
cased_emb,
|
111 |
+
cased_pca
|
112 |
+
),
|
113 |
+
columns=['word', 'embedding', 'pca']
|
114 |
+
)
|
115 |
|
116 |
+
df_cased['word'] = df_cased.word.apply(lambda w: w.lower())
|
117 |
+
df_uncased = df_cased.drop_duplicates(subset='word')
|
118 |
+
return df_uncased
|
119 |
|
120 |
+
def __getValue(
|
121 |
+
self,
|
122 |
+
word: str,
|
123 |
+
feature: str
|
124 |
+
):
|
125 |
word_id, value = None, None
|
126 |
|
127 |
if word in self:
|
|
|
132 |
|
133 |
return value
|
134 |
|
135 |
+
def getEmbedding(
|
136 |
+
self,
|
137 |
+
word: str
|
138 |
+
):
|
139 |
+
|
140 |
return self.__getValue(word, 'embedding')
|
141 |
|
142 |
+
def getPCA(
|
143 |
+
self,
|
144 |
+
word: str
|
145 |
+
):
|
146 |
+
|
147 |
return self.__getValue(word, 'pca')
|
148 |
|
149 |
+
def getNearestNeighbors(
|
150 |
+
self,
|
151 |
+
word: str,
|
152 |
+
n_neighbors: int=10,
|
153 |
+
nn_method: str='sklearn'
|
154 |
+
) -> List[str]:
|
155 |
+
|
156 |
+
assert(n_neighbors <= self.max_neighbors), f"Error: The value of the parameter 'n_neighbors:{n_neighbors}' must less than or equal to {self.max_neighbors}!."
|
157 |
+
|
158 |
if nn_method == 'ann':
|
159 |
words = self.ann.get(word, n_neighbors)
|
160 |
+
|
161 |
elif nn_method == 'sklearn':
|
162 |
+
word_emb = self.getEmbedding(word).reshape(1,-1)
|
163 |
+
_, nn_ids = self.neigh.kneighbors(word_emb, n_neighbors)
|
164 |
+
words = operator.itemgetter(*nn_ids[0])(self.ds['word'].to_list())
|
165 |
else:
|
166 |
words = []
|
167 |
return words
|
168 |
|
169 |
+
def __contains__(
|
170 |
+
self,
|
171 |
+
word: str
|
172 |
+
) -> bool:
|
173 |
+
|
174 |
+
return word in self.ds['word'].to_list()
|
175 |
+
|
176 |
+
# ToDo: Revisar estos dos métodos usados en la pestaña sesgoEnPalabras
|
177 |
+
# ya que ahora los embedding vienen normalizados
|
178 |
+
def cosineSimilarities(self, vector_1, vectors_all):
|
179 |
+
norm = np.linalg.norm(vector_1)
|
180 |
+
all_norms = np.linalg.norm(vectors_all, axis=1)
|
181 |
+
dot_products = dot(vectors_all, vector_1)
|
182 |
+
similarities = dot_products / (norm * all_norms)
|
183 |
+
return similarities
|
184 |
+
|
185 |
def getCosineSimilarities(self, w1, w2):
|
186 |
return dot(
|
187 |
matutils.unitvec(self.getEmbedding(w1)),
|
modules/module_WordExplorer.py
CHANGED
@@ -142,10 +142,13 @@ class WordExplorer:
|
|
142 |
processed_word_list.append(WordToPlot(word, color_dict[color], color, 1))
|
143 |
|
144 |
if n_neighbors > 0:
|
|
|
|
|
145 |
neighbors = self.get_neighbors(word,
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
for n in neighbors:
|
150 |
if n not in [wtp.word for wtp in processed_word_list]:
|
151 |
processed_word_list.append(WordToPlot(n, color_dict[color], color, n_alpha))
|
|
|
142 |
processed_word_list.append(WordToPlot(word, color_dict[color], color, 1))
|
143 |
|
144 |
if n_neighbors > 0:
|
145 |
+
# Updated: Con el agregado del parámetro max_neightbors, el (n_neighbors+1)
|
146 |
+
# hacia superar ese valor máximo y se producia una aserción
|
147 |
neighbors = self.get_neighbors(word,
|
148 |
+
# n_neighbors=n_neighbors+1,
|
149 |
+
n_neighbors=n_neighbors,
|
150 |
+
nn_method=kwargs.get('nn_method', 'sklearn')
|
151 |
+
)
|
152 |
for n in neighbors:
|
153 |
if n not in [wtp.word for wtp in processed_word_list]:
|
154 |
processed_word_list.append(WordToPlot(n, color_dict[color], color, n_alpha))
|
modules/module_connection.py
CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
import gradio as gr
|
4 |
from abc import ABC, abstractmethod
|
5 |
|
6 |
-
from modules.module_WordExplorer import WordExplorer
|
7 |
from modules.module_BiasExplorer import WordBiasExplorer
|
8 |
|
9 |
class Connector(ABC):
|
|
|
3 |
import gradio as gr
|
4 |
from abc import ABC, abstractmethod
|
5 |
|
6 |
+
from modules.module_WordExplorer import WordExplorer # Updated
|
7 |
from modules.module_BiasExplorer import WordBiasExplorer
|
8 |
|
9 |
class Connector(ABC):
|