edia_we_es / modules /module_BiasExplorer.py
LMartinezEXEX's picture
Init commit
a779273
raw
history blame
23.2 kB
import copy
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
def take_two_sides_extreme_sorted(df, n_extreme,
part_column=None,
head_value='',
tail_value=''):
head_df = df.head(n_extreme)[:]
tail_df = df.tail(n_extreme)[:]
if part_column is not None:
head_df[part_column] = head_value
tail_df[part_column] = tail_value
return (pd.concat([head_df, tail_df])
.drop_duplicates()
.reset_index(drop=True))
def normalize(v):
"""Normalize a 1-D vector."""
if v.ndim != 1:
raise ValueError('v should be 1-D, {}-D was given'.format(
v.ndim))
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
def project_params(u, v):
"""Projecting and rejecting the vector v onto direction u with scalar."""
normalize_u = normalize(u)
projection = (v @ normalize_u)
projected_vector = projection * normalize_u
rejected_vector = v - projected_vector
return projection, projected_vector, rejected_vector
def cosine_similarity(v, u):
"""Calculate the cosine similarity between two vectors."""
v_norm = np.linalg.norm(v)
u_norm = np.linalg.norm(u)
similarity = v @ u / (v_norm * u_norm)
return similarity
DIRECTION_METHODS = ['single', 'sum', 'pca']
DEBIAS_METHODS = ['neutralize', 'hard', 'soft']
FIRST_PC_THRESHOLD = 0.5
MAX_NON_SPECIFIC_EXAMPLES = 1000
__all__ = ['GenderBiasWE', 'BiasWordEmbedding']
class WordBiasExplorer():
def __init__(self, vocabulary):
# pylint: disable=undefined-variable
self.vocabulary = vocabulary
self.direction = None
self.positive_end = None
self.negative_end = None
def __copy__(self):
bias_word_embedding = self.__class__(self.vocabulary)
bias_word_embedding.direction = copy.deepcopy(self.direction)
bias_word_embedding.positive_end = copy.deepcopy(self.positive_end)
bias_word_embedding.negative_end = copy.deepcopy(self.negative_end)
return bias_word_embedding
def __deepcopy__(self, memo):
bias_word_embedding = copy.copy(self)
bias_word_embedding.model = copy.deepcopy(bias_word_embedding.model)
return bias_word_embedding
def __getitem__(self, key):
return self.vocabulary.getEmbedding(key)
def __contains__(self, item):
return item in self.vocabulary
def _is_direction_identified(self):
if self.direction is None:
raise RuntimeError('The direction was not identified'
' for this {} instance'
.format(self.__class__.__name__))
def _identify_subspace_by_pca(self, definitional_pairs, n_components):
matrix = []
for word1, word2 in definitional_pairs:
vector1 = normalize(self[word1])
vector2 = normalize(self[word2])
center = (vector1 + vector2) / 2
matrix.append(vector1 - center)
matrix.append(vector2 - center)
pca = PCA(n_components=n_components)
pca.fit(matrix)
return pca
def _identify_direction(self, positive_end, negative_end,
definitional, method='pca'):
if method not in DIRECTION_METHODS:
raise ValueError('method should be one of {}, {} was given'.format(
DIRECTION_METHODS, method))
if positive_end == negative_end:
raise ValueError('positive_end and negative_end'
'should be different, and not the same "{}"'
.format(positive_end))
direction = None
if method == 'single':
direction = normalize(normalize(self[definitional[0]])
- normalize(self[definitional[1]]))
elif method == 'sum':
group1_sum_vector = np.sum([self[word]
for word in definitional[0]], axis=0)
group2_sum_vector = np.sum([self[word]
for word in definitional[1]], axis=0)
diff_vector = (normalize(group1_sum_vector)
- normalize(group2_sum_vector))
direction = normalize(diff_vector)
elif method == 'pca':
pca = self._identify_subspace_by_pca(definitional, 10)
if pca.explained_variance_ratio_[0] < FIRST_PC_THRESHOLD:
raise RuntimeError('The Explained variance'
'of the first principal component should be'
'at least {}, but it is {}'
.format(FIRST_PC_THRESHOLD,
pca.explained_variance_ratio_[0]))
direction = pca.components_[0]
# if direction is opposite (e.g. we cannot control
# what the PCA will return)
ends_diff_projection = cosine_similarity((self[positive_end]
- self[negative_end]),
direction)
if ends_diff_projection < 0:
direction = -direction # pylint: disable=invalid-unary-operand-type
self.direction = direction
self.positive_end = positive_end
self.negative_end = negative_end
def project_on_direction(self, word):
"""Project the normalized vector of the word on the direction.
:param str word: The word tor project
:return float: The projection scalar
"""
self._is_direction_identified()
vector = self[word]
projection_score = self.vocabulary.cosineSimilarities(self.direction,
[vector])[0]
return projection_score
def _calc_projection_scores(self, words):
self._is_direction_identified()
df = pd.DataFrame({'word': words})
# TODO: maybe using cosine_similarities on all the vectors?
# it might be faster
df['projection'] = df['word'].apply(self.project_on_direction)
df = df.sort_values('projection', ascending=False)
return df
def calc_projection_data(self, words):
"""
Calculate projection, projected and rejected vectors of a words list.
:param list words: List of words
:return: :class:`pandas.DataFrame` of the projection,
projected and rejected vectors of the words list
"""
projection_data = []
for word in words:
vector = self[word]
normalized_vector = normalize(vector)
(projection,
projected_vector,
rejected_vector) = project_params(normalized_vector,
self.direction)
projection_data.append({'word': word,
'vector': vector,
'projection': projection,
'projected_vector': projected_vector,
'rejected_vector': rejected_vector})
return pd.DataFrame(projection_data)
def plot_dist_projections_on_direction(self, word_groups, ax=None):
"""Plot the projection scalars distribution on the direction.
:param dict word_groups word: The groups to projects
:return float: The ax object of the plot
"""
if ax is None:
_, ax = plt.subplots(1)
names = sorted(word_groups.keys())
for name in names:
words = word_groups[name]
label = '{} (#{})'.format(name, len(words))
vectors = [self[word] for word in words]
projections = self.vocabulary.cosineSimilarities(self.direction,
vectors)
sns.distplot(projections, hist=False, label=label, ax=ax)
plt.axvline(0, color='k', linestyle='--')
plt.title('← {} {} {} →'.format(self.negative_end,
' ' * 20,
self.positive_end))
plt.xlabel('Direction Projection')
plt.ylabel('Density')
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
return ax
def __errorChecking(self, word):
out_msj = ""
if not word:
out_msj = "Error: Primero debe ingresar una palabra!"
else:
if word not in self.vocabulary:
out_msj = f"Error: La palabra '<b>{word}</b>' no se encuentra en el vocabulario!"
return out_msj
def check_oov(self, wordlists):
for wordlist in wordlists:
for word in wordlist:
msg = self.__errorChecking(word)
if msg:
return msg
return None
def plot_biased_words(self,
words_to_diagnose,
wordlist_right,
wordlist_left,
wordlist_top=[],
wordlist_bottom=[]
):
bias_2D = wordlist_top == [] and wordlist_bottom == []
if bias_2D and (not wordlist_right or not wordlist_left):
raise Exception('For bar plot, wordlist right and left can NOT be empty')
elif not bias_2D and (not wordlist_right or not wordlist_left or not wordlist_top or not wordlist_bottom):
raise Exception('For plane plot, wordlist right, left, top and down can NOT be empty')
err = self.check_oov([words_to_diagnose + wordlist_right + wordlist_left + wordlist_top + wordlist_bottom])
if err:
raise Exception(err)
return self.get_bias_plot(bias_2D,
words_to_diagnose,
definitional_1=(wordlist_right, wordlist_left),
definitional_2=(wordlist_top, wordlist_bottom)
)
def get_bias_plot(self,
plot_2D,
words_to_diagnose,
definitional_1,
definitional_2=([], []),
method='sum',
n_extreme=10,
figsize=(15, 10)
):
fig, ax = plt.subplots(1, figsize=figsize)
self.method = method
self.plot_projection_scores(plot_2D, words_to_diagnose, definitional_1, definitional_2, n_extreme, ax)
if plot_2D:
fig.tight_layout()
fig.canvas.draw()
return fig
def plot_projection_scores(self,
plot_2D,
words,
definitional_1,
definitional_2=([], []),
n_extreme=10,
ax=None,
axis_projection_step=0.1):
name_left = ', '.join(definitional_1[1])
name_right = ', '.join(definitional_1[0])
self._identify_direction(name_left, name_right, definitional=definitional_1, method='sum')
self._is_direction_identified()
projections_df = self._calc_projection_scores(words)
projections_df['projection_x'] = projections_df['projection'].round(2)
if not plot_2D:
name_top = ', '.join(definitional_2[1])
name_bottom = ', '.join(definitional_2[0])
self._identify_direction(name_top, name_bottom, definitional=definitional_2, method='sum')
self._is_direction_identified()
projections_df['projection_y'] = self._calc_projection_scores(words)['projection'].round(2)
if n_extreme is not None:
projections_df = take_two_sides_extreme_sorted(projections_df, n_extreme=n_extreme)
if ax is None:
_, ax = plt.subplots(1)
cmap = plt.get_cmap('RdBu')
projections_df['color'] = ((projections_df['projection'] + 0.5).apply(cmap))
most_extream_projection = np.round(
projections_df['projection']
.abs()
.max(),
decimals=1)
if plot_2D:
sns.barplot(x='projection', y='word', data=projections_df,
palette=projections_df['color'])
else:
sns.scatterplot(x='projection_x', y='projection_y', data=projections_df,
palette=projections_df['color'])
plt.xticks(np.arange(-most_extream_projection,
most_extream_projection + axis_projection_step,
axis_projection_step))
x_label = '← {} {} {} →'.format(name_left,
' ' * 20,
name_right)
if not plot_2D:
y_label = '← {} {} {} →'.format(name_top,
' ' * 20,
name_bottom)
for _, row in (projections_df.iterrows()):
ax.annotate(row['word'], (row['projection_x'], row['projection_y']))
plt.xlabel(x_label)
plt.ylabel('Words')
if not plot_2D:
ax.xaxis.set_label_position('bottom')
ax.xaxis.set_label_coords(.5, 0)
plt.ylabel(y_label)
ax.yaxis.set_label_position('left')
ax.yaxis.set_label_coords(0, .5)
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('center')
ax.set_xticks([])
ax.set_yticks([])
return ax
# TODO: Would be erased if decided to keep all info in BiasWordExplorer
class WEBiasExplorer2d(WordBiasExplorer):
def __init__(self, word_embedding) -> None:
super().__init__(word_embedding)
def calculate_bias( self,
palabras_extremo_1,
palabras_extremo_2,
palabras_para_situar
):
wordlists = [palabras_extremo_1, palabras_extremo_2, palabras_para_situar]
err = self.check_oov(wordlists)
for wordlist in wordlists:
if not wordlist:
err = "<center><h3>" + 'Debe ingresar al menos 1 palabra en las lista de palabras a diagnosticar, sesgo 1 y sesgo 2' + "<center><h3>"
if err:
return None, err
im = self.get_bias_plot(
palabras_para_situar,
definitional=(
palabras_extremo_1, palabras_extremo_2),
method='sum',
n_extreme=10
)
return im, ''
def get_bias_plot(self,
palabras_para_situar,
definitional,
method='sum',
n_extreme=10,
figsize=(10, 10)
):
fig, ax = plt.subplots(1, figsize=figsize)
self.method = method
self.plot_projection_scores(
definitional,
palabras_para_situar, n_extreme, ax=ax,)
fig.tight_layout()
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
w, h = fig.canvas.get_width_height()
im = data.reshape((int(h), int(w), -1))
return im
def plot_projection_scores(self, definitional,
words, n_extreme=10,
ax=None, axis_projection_step=None):
"""Plot the projection scalar of words on the direction.
:param list words: The words tor project
:param int or None n_extreme: The number of extreme words to show
:return: The ax object of the plot
"""
nombre_del_extremo_1 = ', '.join(definitional[0])
nombre_del_extremo_2 = ', '.join(definitional[1])
self._identify_direction(nombre_del_extremo_1, nombre_del_extremo_2,
definitional=definitional,
method='sum')
self._is_direction_identified()
projections_df = self._calc_projection_scores(words)
projections_df['projection'] = projections_df['projection'].round(2)
if n_extreme is not None:
projections_df = take_two_sides_extreme_sorted(projections_df,
n_extreme=n_extreme)
if ax is None:
_, ax = plt.subplots(1)
if axis_projection_step is None:
axis_projection_step = 0.1
cmap = plt.get_cmap('RdBu')
projections_df['color'] = ((projections_df['projection'] + 0.5)
.apply(cmap))
most_extream_projection = np.round(
projections_df['projection']
.abs()
.max(),
decimals=1)
sns.barplot(x='projection', y='word', data=projections_df,
palette=projections_df['color'])
plt.xticks(np.arange(-most_extream_projection,
most_extream_projection + axis_projection_step,
axis_projection_step))
xlabel = ('← {} {} {} →'.format(self.negative_end,
' ' * 20,
self.positive_end))
plt.xlabel(xlabel)
plt.ylabel('Words')
return ax
class WEBiasExplorer4d(WordBiasExplorer):
def __init__(self, word_embedding) -> None:
super().__init__(word_embedding)
def calculate_bias( self,
palabras_extremo_1,
palabras_extremo_2,
palabras_extremo_3,
palabras_extremo_4,
palabras_para_situar
):
wordlists = [
palabras_extremo_1,
palabras_extremo_2,
palabras_extremo_3,
palabras_extremo_4,
palabras_para_situar
]
for wordlist in wordlists:
if not wordlist:
err = "<center><h3>" + \
'¡Para graficar con 4 espacios, debe ingresar al menos 1 palabra en todas las listas!' + "<center><h3>"
err = self.check_oov(wordlist)
if err:
return None, err
im = self.get_bias_plot(
palabras_para_situar,
definitional_1=(
palabras_extremo_1, palabras_extremo_2),
definitional_2=(
palabras_extremo_3, palabras_extremo_4),
method='sum',
n_extreme=10
)
return im, ''
def get_bias_plot(self,
palabras_para_situar,
definitional_1,
definitional_2,
method='sum',
n_extreme=10,
figsize=(10, 10)
):
fig, ax = plt.subplots(1, figsize=figsize)
self.method = method
self.plot_projection_scores(
definitional_1,
definitional_2,
palabras_para_situar, n_extreme, ax=ax,)
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
w, h = fig.canvas.get_width_height()
im = data.reshape((int(h), int(w), -1))
return im
def plot_projection_scores(self, definitional_1, definitional_2,
words, n_extreme=10,
ax=None, axis_projection_step=None):
"""Plot the projection scalar of words on the direction.
:param list words: The words tor project
:param int or None n_extreme: The number of extreme words to show
:return: The ax object of the plot
"""
nombre_del_extremo_1 = ', '.join(definitional_1[1])
nombre_del_extremo_2 = ', '.join(definitional_1[0])
self._identify_direction(nombre_del_extremo_1, nombre_del_extremo_2,
definitional=definitional_1,
method='sum')
self._is_direction_identified()
projections_df = self._calc_projection_scores(words)
projections_df['projection_x'] = projections_df['projection'].round(2)
nombre_del_extremo_3 = ', '.join(definitional_2[1])
nombre_del_extremo_4 = ', '.join(definitional_2[0])
self._identify_direction(nombre_del_extremo_3, nombre_del_extremo_4,
definitional=definitional_2,
method='sum')
self._is_direction_identified()
projections_df['projection_y'] = self._calc_projection_scores(words)[
'projection'].round(2)
if n_extreme is not None:
projections_df = take_two_sides_extreme_sorted(projections_df,
n_extreme=n_extreme)
if ax is None:
_, ax = plt.subplots(1)
if axis_projection_step is None:
axis_projection_step = 0.1
cmap = plt.get_cmap('RdBu')
projections_df['color'] = ((projections_df['projection'] + 0.5)
.apply(cmap))
most_extream_projection = np.round(
projections_df['projection']
.abs()
.max(),
decimals=1)
sns.scatterplot(x='projection_x', y='projection_y', data=projections_df,
palette=projections_df['color'])
plt.xticks(np.arange(-most_extream_projection,
most_extream_projection + axis_projection_step,
axis_projection_step))
for _, row in (projections_df.iterrows()):
ax.annotate(
row['word'], (row['projection_x'], row['projection_y']))
x_label = '← {} {} {} →'.format(nombre_del_extremo_1,
' ' * 20,
nombre_del_extremo_2)
y_label = '← {} {} {} →'.format(nombre_del_extremo_3,
' ' * 20,
nombre_del_extremo_4)
plt.xlabel(x_label)
ax.xaxis.set_label_position('bottom')
ax.xaxis.set_label_coords(.5, 0)
plt.ylabel(y_label)
ax.yaxis.set_label_position('left')
ax.yaxis.set_label_coords(0, .5)
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('center')
ax.set_xticks([])
ax.set_yticks([])
#plt.yticks([], [])
# ax.spines['left'].set_position('zero')
# ax.spines['bottom'].set_position('zero')
return ax