Spaces:
Runtime error
Runtime error
second try on multiuple speakers
Browse files
app.py
CHANGED
@@ -62,24 +62,12 @@ else:
|
|
62 |
cluster_model_path = None
|
63 |
default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0
|
64 |
|
65 |
-
|
66 |
-
generator_path = None
|
67 |
-
if speaker == speakers[0]:
|
68 |
-
generator_path = hf_hub_download(repo_id, "G_10000.pth")
|
69 |
-
elif speaker == speakers[1]:
|
70 |
-
generator_path = hf_hub_download(repo_id, "G_534.pth")
|
71 |
-
elif speaker == speakers[2]:
|
72 |
-
generator_path = hf_hub_download(repo_id, "G_9933.pth")
|
73 |
-
else:
|
74 |
-
# Handle the case when the speaker type is not recognized
|
75 |
-
raise ValueError("Invalid speaker type")
|
76 |
-
|
77 |
-
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path)
|
78 |
config_path = hf_hub_download(repo_id, "config.json")
|
79 |
hparams = HParams(**json.loads(Path(config_path).read_text()))
|
80 |
speakers = list(hparams.spk.keys())
|
81 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
82 |
-
|
83 |
demucs_model = get_model(DEFAULT_MODEL)
|
84 |
|
85 |
|
@@ -142,7 +130,6 @@ def download_youtube_clip(
|
|
142 |
else:
|
143 |
return None
|
144 |
|
145 |
-
|
146 |
def predict(
|
147 |
speaker,
|
148 |
audio,
|
@@ -156,6 +143,18 @@ def predict(
|
|
156 |
chunk_seconds: float = 0.5,
|
157 |
absolute_thresh: bool = False,
|
158 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit)
|
160 |
audio = model.infer_silence(
|
161 |
audio.astype(np.float32),
|
@@ -172,6 +171,7 @@ def predict(
|
|
172 |
)
|
173 |
return model.target_sample, audio
|
174 |
|
|
|
175 |
SPACE_ID = "nateraw/voice-cloning"
|
176 |
description = f"""
|
177 |
# Attention - This Space may be slow in the shared UI if there is a long queue. To speed it up, you can duplicate and use it with a paid private T4 GPU.
|
|
|
62 |
cluster_model_path = None
|
63 |
default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0
|
64 |
|
65 |
+
generator_path = hf_hub_download(repo_id, ckpt_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
config_path = hf_hub_download(repo_id, "config.json")
|
67 |
hparams = HParams(**json.loads(Path(config_path).read_text()))
|
68 |
speakers = list(hparams.spk.keys())
|
69 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
70 |
+
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path)
|
71 |
demucs_model = get_model(DEFAULT_MODEL)
|
72 |
|
73 |
|
|
|
130 |
else:
|
131 |
return None
|
132 |
|
|
|
133 |
def predict(
|
134 |
speaker,
|
135 |
audio,
|
|
|
143 |
chunk_seconds: float = 0.5,
|
144 |
absolute_thresh: bool = False,
|
145 |
):
|
146 |
+
if speaker == speakers[0]:
|
147 |
+
generator_path = hf_hub_download(repo_id, "G_10000.pth")
|
148 |
+
elif speaker == speakers[1]:
|
149 |
+
generator_path = hf_hub_download(repo_id, "G_534.pth")
|
150 |
+
elif speaker == speakers[2]:
|
151 |
+
generator_path = hf_hub_download(repo_id, "G_9933.pth")
|
152 |
+
else:
|
153 |
+
# Handle the case when the speaker type is not recognized
|
154 |
+
raise ValueError("Invalid speaker type")
|
155 |
+
|
156 |
+
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path)
|
157 |
+
|
158 |
audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit)
|
159 |
audio = model.infer_silence(
|
160 |
audio.astype(np.float32),
|
|
|
171 |
)
|
172 |
return model.target_sample, audio
|
173 |
|
174 |
+
|
175 |
SPACE_ID = "nateraw/voice-cloning"
|
176 |
description = f"""
|
177 |
# Attention - This Space may be slow in the shared UI if there is a long queue. To speed it up, you can duplicate and use it with a paid private T4 GPU.
|