Spaces:
Runtime error
Runtime error
HardWorkingStation
commited on
Commit
•
940c1fc
1
Parent(s):
1cb94a2
Initial commit
Browse files- .github/workflows/main.yml +7 -4
- README.md +6 -4
- src/app.py +2 -4
- src/tools.py +3 -10
.github/workflows/main.yml
CHANGED
@@ -2,8 +2,9 @@ name: Sync to Hugging Face hub
|
|
2 |
on:
|
3 |
push:
|
4 |
branches: [main]
|
5 |
-
|
6 |
-
|
|
|
7 |
workflow_dispatch:
|
8 |
|
9 |
jobs:
|
@@ -16,6 +17,8 @@ jobs:
|
|
16 |
with:
|
17 |
filesizelimit: 10485760 # this is 10MB so we can sync to HF Spaces
|
18 |
|
|
|
|
|
19 |
sync-to-hub:
|
20 |
runs-on: ubuntu-latest
|
21 |
steps:
|
@@ -25,5 +28,5 @@ jobs:
|
|
25 |
- name: Push to hub
|
26 |
env:
|
27 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
28 |
-
run: git push --force https://HF_USERNAME:$HF_TOKEN@huggingface.co/spaces/versus666/uplift_lab main
|
29 |
-
needs: check_files
|
|
|
2 |
on:
|
3 |
push:
|
4 |
branches: [main]
|
5 |
+
pull_request:
|
6 |
+
branches: [main]
|
7 |
+
# to run this workflow manually from the Actions tab
|
8 |
workflow_dispatch:
|
9 |
|
10 |
jobs:
|
|
|
17 |
with:
|
18 |
filesizelimit: 10485760 # this is 10MB so we can sync to HF Spaces
|
19 |
|
20 |
+
|
21 |
+
|
22 |
sync-to-hub:
|
23 |
runs-on: ubuntu-latest
|
24 |
steps:
|
|
|
28 |
- name: Push to hub
|
29 |
env:
|
30 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
31 |
+
run: git push --force https://HF_USERNAME:$HF_TOKEN@huggingface.co/spaces/versus666/uplift_lab main
|
32 |
+
needs: check_files
|
README.md
CHANGED
@@ -1,8 +1,10 @@
|
|
|
|
|
|
1 |
---
|
2 |
-
title: Uplift
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.10.0
|
8 |
app_file: src/app.py
|
|
|
1 |
+
|
2 |
+
|
3 |
---
|
4 |
+
title: Uplift lab
|
5 |
+
emoji: 🚀
|
6 |
+
colorFrom: blue
|
7 |
+
colorTo: green
|
8 |
sdk: streamlit
|
9 |
sdk_version: 1.10.0
|
10 |
app_file: src/app.py
|
src/app.py
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
-
import catboost
|
2 |
import pandas as pd
|
3 |
-
|
4 |
from sklift.metrics import uplift_at_k, uplift_by_percentile, qini_auc_score, qini_curve, uplift_curve
|
5 |
from sklift.viz import plot_qini_curve, plot_uplift_curve
|
6 |
-
|
7 |
import streamlit as st
|
8 |
-
import catboost
|
9 |
|
10 |
import tools
|
11 |
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
|
3 |
from sklift.metrics import uplift_at_k, uplift_by_percentile, qini_auc_score, qini_curve, uplift_curve
|
4 |
from sklift.viz import plot_qini_curve, plot_uplift_curve
|
5 |
+
|
6 |
import streamlit as st
|
|
|
7 |
|
8 |
import tools
|
9 |
|
src/tools.py
CHANGED
@@ -1,16 +1,9 @@
|
|
1 |
-
from typing import Any
|
2 |
-
|
3 |
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from sklift.datasets import fetch_hillstrom
|
7 |
-
from sklift.metrics import
|
8 |
-
from sklift.viz import plot_uplift_by_percentile
|
9 |
-
from catboost import CatBoostClassifier
|
10 |
-
import sklearn
|
11 |
import streamlit as st
|
12 |
import plotly.express as px
|
13 |
-
import plotly.graph_objects as go
|
14 |
|
15 |
|
16 |
def test():
|
@@ -18,7 +11,7 @@ def test():
|
|
18 |
|
19 |
|
20 |
@st.experimental_memo
|
21 |
-
def get_data()
|
22 |
# получаем датасет
|
23 |
dataset = fetch_hillstrom(target_col='visit')
|
24 |
dataset, target, treatment = dataset['data'], dataset['target'], dataset['treatment']
|
@@ -34,7 +27,7 @@ def get_data() -> tuple[Any, Any, Any]:
|
|
34 |
|
35 |
|
36 |
@st.experimental_memo
|
37 |
-
def data_split(data: pd.DataFrame, treatment: pd.DataFrame, target: pd.DataFrame)
|
38 |
# склеиваем threatment и target для дальнейшей стратификации по ним
|
39 |
stratify_cols = pd.concat([treatment, target], axis=1)
|
40 |
# сплитим датасет
|
|
|
|
|
|
|
1 |
import pandas as pd
|
|
|
2 |
from sklearn.model_selection import train_test_split
|
3 |
from sklift.datasets import fetch_hillstrom
|
4 |
+
from sklift.metrics import weighted_average_uplift
|
|
|
|
|
|
|
5 |
import streamlit as st
|
6 |
import plotly.express as px
|
|
|
7 |
|
8 |
|
9 |
def test():
|
|
|
11 |
|
12 |
|
13 |
@st.experimental_memo
|
14 |
+
def get_data():
|
15 |
# получаем датасет
|
16 |
dataset = fetch_hillstrom(target_col='visit')
|
17 |
dataset, target, treatment = dataset['data'], dataset['target'], dataset['treatment']
|
|
|
27 |
|
28 |
|
29 |
@st.experimental_memo
|
30 |
+
def data_split(data: pd.DataFrame, treatment: pd.DataFrame, target: pd.DataFrame):
|
31 |
# склеиваем threatment и target для дальнейшей стратификации по ним
|
32 |
stratify_cols = pd.concat([treatment, target], axis=1)
|
33 |
# сплитим датасет
|