vgvm
fix quads and add workflow comment
fbcab86
raw
history blame
16.8 kB
import gradio as gr
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_face_mesh = mp.solutions.face_mesh
import numpy as np
from mediapipe.framework.formats import landmark_pb2
from typing import List, Mapping, Optional, Tuple, Union
import pygltflib
import struct
import tempfile
QUADS = [
[300, 334, 333, 298] , [ 1, 12, 303, 268] , [234, 233, 122, 129] , [270, 304, 305, 271] , [246, 129, 115, 189] ,
[112, 118, 229, 32] , [104, 55, 69, 105] , [228, 35, 128, 235] , [120, 102, 101, 121] , [ 74, 73, 38, 40] ,
[ 71, 47, 54, 64] , [135, 132, 116, 221] , [335, 294, 299, 334] , [ 73, 12, 1, 38] , [ 42, 43, 81, 82] ,
[166, 93, 41, 40] , [122, 233, 232, 121] , [215, 213, 217, 208] , [183, 84, 85, 182] , [376, 308, 321, 322] ,
[ 30, 161, 160, 28] , [ 57, 29, 159, 158] , [ 84, 202, 201, 19] , [117, 144, 35, 228] , [204, 207, 93, 166] ,
[139, 216, 59, 173] , [276, 282, 6, 5] , [ 25, 145, 164, 111] , [292, 307, 308, 376] , [143, 127, 48, 101] ,
[419, 422, 429, 263] , [147, 44, 107, 92] , [ 17, 86, 85, 18] , [ 78, 77, 62, 147] , [127, 210, 199, 218] ,
[397, 378, 401, 370] , [166, 40, 38, 168] , [245, 234, 129, 246] , [ 31, 248, 247, 162] , [ 34, 247, 248, 131] ,
[175, 218, 199, 237] , [418, 352, 413, 466] , [125, 114, 226, 47] , [225, 224, 53, 54] , [ 99, 65, 103, 130] ,
[193, 215, 208, 188] , [219, 80, 240, 238] , [134, 156, 113, 244] , [345, 361, 364, 441] , [141, 171, 150, 177] ,
[400, 413, 352, 420] , [119, 230, 229, 118] , [282, 276, 441, 364] , [ 71, 64, 69, 72] , [315, 314, 407, 406] ,
[222, 190, 194, 56] , [114, 248, 31, 226] , [106, 53, 66, 67] , [236, 60, 167, 220] , [108, 56, 9, 10] ,
[ 67, 66, 56, 108] , [ 69, 64, 106, 105] , [120, 119, 51, 102] , [242, 126, 45, 238] , [ 6, 196, 4, 52] ,
[143, 130, 210, 127] , [ 34, 131, 26, 8] , [323, 271, 410, 411] , [ 33, 195, 205, 212] , [ 37, 102, 51, 206] ,
[195, 202, 84, 183] , [238, 240, 239, 242] , [ 26, 111, 164, 8] , [225, 54, 47, 226] , [154, 146, 24, 23] ,
[211, 203, 213, 215] , [246, 194, 190, 245] , [425, 336, 407, 419] , [318, 317, 404, 403] , [ 33, 212, 171, 141] ,
[ 12, 73, 39, 13] , [208, 217, 207, 206] , [238, 221, 116, 219] , [ 46, 221, 238, 45] , [184, 43, 75, 185] ,
[209, 202, 195, 33] , [269, 272, 304, 303] , [214, 148, 178, 216] , [235, 94, 138, 228] , [ 67, 108, 109, 70] ,
[ 7, 352, 418, 169] , [193, 188, 148, 214] , [ 97, 63, 77, 78] , [125, 47, 71, 157] , [317, 16, 17, 316] ,
[180, 87, 88, 179] , [106, 64, 54, 53] , [119, 118, 124, 51] , [146, 145, 25, 24] , [325, 319, 320, 326] ,
[123, 189, 175, 197] , [293, 309, 325, 326] , [150, 171, 170, 151] , [178, 138, 94, 133] , [328, 295, 456, 461] ,
[361, 421, 457, 364] , [336, 274, 376, 322] , [396, 395, 431, 432] , [ 13, 39, 83, 14] , [278, 330, 350, 351] ,
[191, 57, 158, 174] , [117, 112, 36, 144] , [224, 223, 66, 53] , [140, 72, 22, 163] , [163, 128, 35, 140] ,
[366, 365, 395, 380] , [219, 116, 49, 220] , [430, 359, 372, 356] , [157, 144, 36, 125] , [377, 353, 281, 412] ,
[125, 36, 227, 114] , [355, 20, 95, 371] , [120, 231, 230, 119] , [249, 457, 400, 420] , [162, 161, 30, 31] ,
[ 46, 45, 2, 5] , [141, 172, 209, 33] , [394, 392, 328, 327] , [ 32, 26, 131, 227] , [300, 298, 339, 338] ,
[395, 396, 379, 380] , [102, 37, 143, 101] , [217, 213, 58, 187] , [327, 3, 165, 394] , [242, 239, 21, 243] ,
[186, 41, 93, 187] , [269, 303, 12, 13] , [192, 81, 43, 184] , [140, 35, 144, 157] , [223, 222, 56, 66] ,
[189, 115, 218, 175] , [323, 427, 424, 392] , [ 37, 204, 130, 143] , [280, 430, 421, 361] , [ 2, 275, 276, 5] ,
[134, 244, 191, 174] , [241, 76, 60, 236] , [108, 10, 152, 109] , [ 27, 155, 154, 23] , [211, 215, 136, 170] ,
[355, 275, 2, 20] , [ 90, 89, 96, 97] , [321, 320, 404, 405] , [316, 315, 406, 405] , [107, 44, 203, 205] ,
[201, 422, 314, 19] , [153, 176, 172, 149] , [376, 274, 288, 292] , [292, 288, 411, 410] , [130, 204, 166, 99] ,
[115, 48, 127, 218] , [327, 328, 461, 329] , [105, 106, 67, 70] , [236, 65, 99, 241] , [200, 201, 202, 209] ,
[332, 295, 328, 359] , [100, 61, 76, 241] , [243, 142, 126, 242] , [329, 463, 371, 327] , [220, 167, 80, 219] ,
[233, 27, 23, 232] , [190, 222, 57, 191] , [223, 29, 57, 222] , [244, 113, 234, 245] , [ 32, 229, 111, 26] ,
[226, 31, 30, 225] , [232, 23, 24, 231] , [225, 30, 28, 224] , [114, 227, 131, 248] , [ 32, 227, 36, 112] ,
[234, 113, 27, 233] , [230, 25, 111, 229] , [224, 28, 29, 223] , [ 95, 20, 126, 142] , [239, 240, 80, 21] ,
[243, 21, 61, 100] , [157, 71, 72, 140] , [ 76, 61, 167, 60] , [189, 123, 194, 246] , [231, 24, 25, 230] ,
[232, 231, 120, 121] , [121, 101, 48, 122] , [208, 206, 51, 188] , [332, 280, 279, 295] , [196, 249, 420, 198] ,
[199, 210, 50, 132] , [177, 149, 172, 141] , [117, 124, 118, 112] , [ 28, 160, 159, 29] , [245, 190, 191, 244] ,
[379, 396, 370, 401] , [268, 303, 304, 270] , [351, 453, 454, 358] , [ 75, 74, 40, 41] , [169, 418, 286, 9] ,
[283, 444, 445, 284] , [397, 176, 153, 378] , [110, 68, 70, 109] , [301, 277, 354, 384] , [186, 62, 77, 185] ,
[299, 294, 301, 302] , [ 50, 49, 116, 132] , [422, 201, 200, 429] , [304, 272, 273, 305] , [271, 323, 392, 270] ,
[296, 443, 444, 283] , [427, 437, 428, 426] , [336, 322, 406, 407] , [ 19, 314, 315, 18] , [387, 388, 260, 258] ,
[255, 374, 375, 254] , [314, 422, 419, 407] , [297, 335, 334, 300] , [313, 312, 272, 269] , [ 55, 22, 72, 69] ,
[221, 46, 52, 135] , [391, 374, 255, 340] , [315, 316, 17, 18] , [372, 267, 331, 330] , [423, 274, 336, 425] ,
[ 58, 44, 147, 62] , [ 91, 78, 147, 92] , [182, 85, 86, 181] , [423, 425, 432, 431] , [357, 265, 448, 455] ,
[268, 270, 392, 394] , [358, 454, 465, 466] , [264, 360, 468, 467] , [264, 250, 256, 360] , [421, 430, 356, 438] ,
[194, 123, 7, 169] , [449, 450, 348, 347] , [277, 284, 445, 446] , [241, 99, 98, 100] , [281, 331, 267, 426] ,
[307, 292, 410, 409] , [260, 388, 389, 261] , [364, 457, 249, 282] , [338, 339, 11, 152] , [438, 344, 413, 400] ,
[349, 451, 452, 350] , [345, 279, 280, 361] , [402, 377, 434, 436] , [367, 324, 455, 448] , [182, 92, 107, 183] ,
[418, 414, 442, 286] , [360, 256, 262, 447] , [284, 277, 301, 294] , [291, 251, 463, 329] , [344, 358, 466, 413] ,
[179, 89, 90, 180] , [266, 341, 346, 373] , [429, 397, 370, 263] , [296, 283, 335, 297] , [275, 355, 462, 458] ,
[ 4, 237, 135, 52] , [359, 424, 267, 372] , [386, 387, 258, 259] , [394, 165, 1, 268] , [207, 217, 187, 93] ,
[278, 356, 372, 330] , [ 44, 58, 213, 203] , [459, 460, 458, 462] , [381, 382, 257, 253] , [266, 447, 262, 341] ,
[399, 385, 287, 415] , [437, 433, 435, 428] , [447, 266, 354, 343] , [183, 107, 205, 195] , [ 43, 42, 74, 75] ,
[302, 301, 384, 369] , [425, 419, 263, 432] , [295, 279, 440, 456] , [ 49, 50, 103, 65] , [ 74, 42, 39, 73] ,
[433, 423, 431, 435] , [311, 273, 272, 312] , [353, 367, 448, 346] , [252, 302, 369, 390] , [209, 172, 176, 200] ,
[ 56, 194, 169, 9] , [377, 412, 417, 434] , [ 90, 97, 78, 91] , [330, 331, 349, 350] , [180, 90, 91, 181] ,
[281, 348, 349, 331] , [265, 373, 346, 448] , [324, 367, 402, 362] , [308, 326, 320, 321] , [ 16, 15, 88, 87] ,
[266, 373, 384, 354] , [353, 347, 348, 281] , [363, 399, 415, 464] , [318, 15, 16, 317] , [356, 278, 344, 438] ,
[ 96, 79, 63, 97] , [ 11, 110, 109, 152] , [398, 368, 365, 366] , [ 2, 45, 126, 20] , [313, 269, 13, 14] ,
[237, 199, 132, 135] , [187, 58, 62, 186] , [152, 10, 337, 338] , [ 42, 82, 83, 39] , [414, 418, 466, 465] ,
[467, 468, 261, 389] , [ 9, 286, 337, 10] , [446, 343, 354, 277] , [265, 357, 390, 369] , [436, 434, 417, 368] ,
[170, 136, 137, 151] , [458, 441, 276, 275] , [212, 205, 203, 211] , [347, 353, 346, 341] , [284, 294, 335, 283] ,
[452, 453, 351, 350] , [ 95, 3, 327, 371] , [450, 451, 349, 348] , [197, 4, 196, 198] , [254, 375, 381, 253] ,
[345, 441, 458, 439] , [367, 353, 377, 402] , [449, 347, 341, 262] , [360, 447, 343, 468] , [136, 139, 173, 137] ,
[289, 436, 368, 398] , [281, 426, 428, 412] , [288, 433, 437, 411] , [ 99, 166, 168, 98] , [142, 243, 100, 98] ,
[175, 237, 4, 197] , [185, 75, 41, 186] , [307, 293, 326, 308] , [396, 432, 263, 370] , [286, 442, 443, 296] ,
[428, 435, 417, 412] , [411, 437, 427, 323] , [421, 438, 400, 457] , [165, 3, 98, 168] , [279, 345, 439, 440] ,
[391, 340, 256, 250] , [306, 291, 329, 461] , [373, 265, 369, 384] , [386, 259, 287, 385] , [435, 365, 368, 417] ,
[251, 459, 462, 463] , [320, 319, 403, 404] , [ 17, 16, 87, 86] , [322, 321, 405, 406] , [ 85, 84, 19, 18] ,
[433, 288, 274, 423] , [362, 402, 436, 289] , [185, 77, 63, 184] , [293, 307, 409, 408] , [392, 424, 359, 328] ,
[352, 7, 198, 420] , [228, 138, 124, 117] , [393, 290, 456, 440] , [176, 397, 429, 200] , [220, 49, 65, 236] ,
[424, 427, 426, 267] , [332, 359, 430, 280] , [365, 435, 431, 395] , [310, 251, 291, 393] , [355, 371, 463, 462] ,
[ 98, 3, 95, 142] , [255, 254, 451, 450] , [415, 414, 465, 464] , [254, 253, 452, 451] , [261, 468, 343, 446] ,
[260, 261, 446, 445] , [258, 260, 445, 444] , [454, 342, 464, 465] , [198, 7, 123, 197] , [259, 258, 444, 443] ,
[287, 442, 414, 415] , [340, 449, 262, 256] , [340, 255, 450, 449] , [257, 342, 454, 453] , [ 61, 21, 80, 167] ,
[310, 393, 440, 439] , [338, 337, 297, 300] , [310, 460, 459, 251] , [ 51, 124, 148, 188] , [253, 257, 453, 452] ,
[215, 193, 139, 136] , [351, 358, 344, 278] , [113, 156, 155, 27] , [ 6, 52, 46, 5] , [206, 207, 204, 37] ,
[249, 196, 6, 282] , [216, 178, 133, 59] , [286, 296, 297, 337] , [382, 383, 342, 257] , [287, 259, 443, 442] ,
[211, 170, 171, 212] , [306, 461, 456, 290] , [104, 105, 70, 68] , [271, 305, 409, 410] , [460, 310, 439, 458] ,
[214, 216, 139, 193] , [317, 316, 405, 404] , [181, 91, 92, 182] , [ 1, 165, 168, 38] , [363, 464, 342, 383] ,
[210, 130, 103, 50] , [305, 273, 408, 409] , [311, 416, 408, 273] , [309, 293, 408, 416] , [184, 63, 79, 192] ,
[115, 129, 122, 48] , [148, 124, 138, 178] , [181, 86, 87, 180] , [290, 393, 291, 306] , [252, 285, 299, 302] ,
[285, 333, 334, 299]
]
class face_image_to_face_mesh:
def demo(self):
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Face Image to Face Quad Mesh
Uses MediaPipe to detect a face in an image and convert it to a quad mesh.
Currently saves to OBJ, hopefully glb at some point with color data.
The 3d viewer has Y pointing the opposite direction from Blender, so ya hafta spin it.
The initial workflow I was imagining was:
1. sculpt high poly mesh in blender
2. snapshot the face
3. generate the mesh using the mediapipe stuff
4. import the low poly mediapipe face
5. snap the mesh to the high poly model
6. model the rest of the low poly model
7. bake the normal / etc maps to the low poly face model
8. it's just that easy 😛
Ideally it would be a plugin...
""")
with gr.Row():
with gr.Column():
upload_image = gr.Image(label="Input image", type="numpy", source="upload")
gr.Examples( examples=[
'examples/blonde-00019-1421846474.png',
'examples/dude-00110-1227390728.png',
'examples/granny-00056-1867315302.png',
'examples/tuffie-00039-499759385.png',
], inputs=[upload_image] )
upload_image_btn = gr.Button(value="Detect faces")
with gr.Group():
min_detection_confidence = gr.Slider(label="Min detection confidence", value=0.5, minimum=0.0, maximum=1.0, step=0.01)
gr.Textbox(show_label=False, value="Minimum confidence value ([0.0, 1.0]) from the face detection model for the detection to be considered successful.")
with gr.Column():
with gr.Group():
num_faces_detected = gr.Number(label="Number of faces detected", value=0)
output_mesh = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model")
output_image = gr.Image(label="Output image")
outputs = [output_mesh, output_image, num_faces_detected]
upload_image_btn.click(
fn=self.detect,
inputs=[upload_image, min_detection_confidence],
outputs=outputs
)
demo.launch()
def detect(self, image, min_detection_confidence):
width = image.shape[1]
height = image.shape[0]
ratio = width / height
mesh = "examples/jackiechan.obj"
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
with mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=1,
min_detection_confidence=min_detection_confidence) as face_mesh:
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return mesh, image, 0
annotated_image = image.copy()
for face_landmarks in results.multi_face_landmarks:
mesh = self.toObj(ratio=ratio, landmark_list=face_landmarks)
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_tesselation_style())
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_contours_style())
return mesh, annotated_image,1
def toObj( self, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList):
print( f'you have such pretty hair' )
lines = []
points = self.landmarksToPoints( ratio, landmark_list )
for point in points:
vertex = "v " + " ".join([str(value) for value in point])
lines.append( vertex )
for quad in QUADS:
face = "f " + " ".join([str(vertex) for vertex in quad])
lines.append( face )
normal = self.totallyNormal( points[ quad[ 0 ] -1 ], points[ quad[ 1 ] -1 ], points[ quad[ 2 ] -1 ] )
lines.append( "vn " + " ".join([str(value) for value in normal]) )
obj_file = tempfile.NamedTemporaryFile(suffix='.obj', delete=False)
output_file = obj_file.name
out = open( output_file, 'w' )
out.write( '\n'.join( lines ) )
out.close()
print( f'I know it is special to you so I saved it to {output_file} since we are friends' )
return output_file
def landmarksToPoints( self, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList ):
points = []
mins = [+np.inf] * 3
maxs = [-np.inf] * 3
for idx, landmark in enumerate(landmark_list.landmark):
if ((landmark.HasField('visibility') and
landmark.visibility < _VISIBILITY_THRESHOLD) or
(landmark.HasField('presence') and
landmark.presence < _PRESENCE_THRESHOLD)):
idk_what_to_do_for_this = True
point = [landmark.x * ratio, -landmark.y, -landmark.z];
for pidx,value in enumerate( point ):
mins[pidx] = min(mins[pidx],value)
maxs[pidx] = max(maxs[pidx],value)
points.append( point )
mids = [(min_val + max_val) / 2 for min_val, max_val in zip(mins, maxs)]
for idx,point in enumerate( points ):
points[idx] = [(val-mid) for val, mid in zip(point,mids)]
print( f'mins: {mins}' )
print( f'mids: {mids}' )
print( f'maxs: {maxs}' )
return points
def totallyNormal(self, p0, p1, p2):
v1 = np.array(p1) - np.array(p0)
v2 = np.array(p2) - np.array(p0)
normal = np.cross(v1, v2)
normal = normal / np.linalg.norm(normal)
return normal.tolist()
face_image_to_face_mesh().demo()