Spaces:
Runtime error
Runtime error
# from https://huggingface.co/spaces/shariqfarooq/ZoeDepth/raw/main/utils.py | |
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import matplotlib | |
import matplotlib.cm | |
import numpy as np | |
import torch | |
def colorize(value, vmin=None, vmax=None, cmap='magma_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None): | |
"""Converts a depth map to a color image. | |
Args: | |
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed | |
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None. | |
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None. | |
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'. | |
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99. | |
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None. | |
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255). | |
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False. | |
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None. | |
Returns: | |
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4) | |
""" | |
if isinstance(value, torch.Tensor): | |
value = value.detach().cpu().numpy() | |
value = value.squeeze() | |
if invalid_mask is None: | |
invalid_mask = value == invalid_val | |
mask = np.logical_not(invalid_mask) | |
# normalize | |
vmin = np.percentile(value[mask],2) if vmin is None else vmin | |
vmax = np.percentile(value[mask],85) if vmax is None else vmax | |
if vmin != vmax: | |
value = (value - vmin) / (vmax - vmin) # vmin..vmax | |
else: | |
# Avoid 0-division | |
value = value * 0. | |
# squeeze last dim if it exists | |
# grey out the invalid values | |
value[invalid_mask] = np.nan | |
cmapper = matplotlib.cm.get_cmap(cmap) | |
if value_transform: | |
value = value_transform(value) | |
# value = value / value.max() | |
value = cmapper(value, bytes=True) # (nxmx4) | |
# img = value[:, :, :] | |
img = value[...] | |
img[invalid_mask] = background_color | |
# return img.transpose((2, 0, 1)) | |
if gamma_corrected: | |
# gamma correction | |
img = img / 255 | |
img = np.power(img, 2.2) | |
img = img * 255 | |
img = img.astype(np.uint8) | |
return img | |
import os | |
# bard... | |
def find_most_recently_created_directory(temp_dir): | |
"""Finds the most recently created directory in a directory. | |
Args: | |
temp_dir: The directory to search. | |
Returns: | |
The path to the most recently created directory. | |
""" | |
directories = os.listdir(temp_dir) | |
most_recently_created_directory = None | |
for directory in directories: | |
path = os.path.join(temp_dir, directory) | |
st = os.stat(path) | |
if most_recently_created_directory is None or st.mtime > most_recently_created_directory.mtime: | |
most_recently_created_directory = path | |
if most_recently_created_directory is None: | |
most_recently_created_directory = temp_dir | |
return most_recently_created_directory | |
#chatgpt | |
def get_most_recent_subdirectory(path): | |
if not os.path.isdir(path): | |
return path | |
subdirectories = [f for f in os.listdir(path) if os.path.isdir(os.path.join(path, f))] | |
if not subdirectories: | |
return path | |
most_recent_subdirectory = max(subdirectories, key=lambda d: os.path.getctime(os.path.join(path, d))) | |
return os.path.join(path, most_recent_subdirectory) | |