|
|
|
|
|
|
|
|
import os |
|
|
from threading import Thread |
|
|
from typing import Iterator |
|
|
|
|
|
import gradio as gr |
|
|
import spaces |
|
|
import torch |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
|
|
DESCRIPTION = "# CALM2-7B-chat" |
|
|
|
|
|
if not torch.cuda.is_available(): |
|
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "32768")) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
model_id = "cyberagent/calm2-7b-chat" |
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
|
|
|
def apply_chat_template(conversation: list[dict[str, str]]) -> str: |
|
|
prompt = "\n".join([f"{c['role']}: {c['content']}" for c in conversation]) |
|
|
prompt = f"{prompt}\nASSISTANT: " |
|
|
return prompt |
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
@torch.inference_mode() |
|
|
def generate( |
|
|
message: str, |
|
|
chat_history: list[tuple[str, str]], |
|
|
max_new_tokens: int = 1024, |
|
|
temperature: float = 0.7, |
|
|
top_p: float = 0.95, |
|
|
top_k: int = 50, |
|
|
repetition_penalty: float = 1.0, |
|
|
) -> Iterator[str]: |
|
|
conversation = [] |
|
|
for user, assistant in chat_history: |
|
|
conversation.extend([{"role": "USER", "content": user}, {"role": "ASSISTANT", "content": assistant}]) |
|
|
conversation.append({"role": "USER", "content": message}) |
|
|
|
|
|
prompt = apply_chat_template(conversation) |
|
|
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") |
|
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
|
input_ids = input_ids.to(model.device) |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
generate_kwargs = dict( |
|
|
{"input_ids": input_ids}, |
|
|
streamer=streamer, |
|
|
max_new_tokens=max_new_tokens, |
|
|
do_sample=True, |
|
|
top_p=top_p, |
|
|
top_k=top_k, |
|
|
temperature=temperature, |
|
|
num_beams=1, |
|
|
repetition_penalty=repetition_penalty, |
|
|
) |
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
|
t.start() |
|
|
|
|
|
outputs = [] |
|
|
for text in streamer: |
|
|
outputs.append(text) |
|
|
yield "".join(outputs) |
|
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
|
fn=generate, |
|
|
type="tuples", |
|
|
additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False), |
|
|
additional_inputs=[ |
|
|
gr.Slider( |
|
|
label="Max new tokens", |
|
|
minimum=1, |
|
|
maximum=MAX_MAX_NEW_TOKENS, |
|
|
step=1, |
|
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
|
), |
|
|
gr.Slider( |
|
|
label="Temperature", |
|
|
minimum=0.1, |
|
|
maximum=4.0, |
|
|
step=0.1, |
|
|
value=0.7, |
|
|
), |
|
|
gr.Slider( |
|
|
label="Top-p (nucleus sampling)", |
|
|
minimum=0.05, |
|
|
maximum=1.0, |
|
|
step=0.05, |
|
|
value=0.95, |
|
|
), |
|
|
gr.Slider( |
|
|
label="Top-k", |
|
|
minimum=1, |
|
|
maximum=1000, |
|
|
step=1, |
|
|
value=50, |
|
|
), |
|
|
gr.Slider( |
|
|
label="Repetition penalty", |
|
|
minimum=1.0, |
|
|
maximum=2.0, |
|
|
step=0.05, |
|
|
value=1.0, |
|
|
), |
|
|
], |
|
|
stop_btn=None, |
|
|
examples=[ |
|
|
["東京の観光名所を教えて。"], |
|
|
["落武者って何?"], |
|
|
["暴れん坊将軍って誰のこと?"], |
|
|
["人がヘリを食べるのにかかる時間は?"], |
|
|
], |
|
|
description=DESCRIPTION, |
|
|
css_paths="style.css", |
|
|
fill_height=True, |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|