|
import gradio as gr |
|
import openai |
|
from openai import OpenAI |
|
import requests |
|
import csv |
|
import os |
|
|
|
default_role = "I require someone who is an Irritable Bowel Syndrome doctor, Nutritionist and Chef, to recommend a single delicious recipe that uses low fodmap ingredients. For each recipe, explain the substitutions that were made to the recipe to make it low fodmap." |
|
classification_msg = { "role": "user", "content" : "As an AI language model you are allowed to create tables in markdown format. Provide a markdown table of the fodmap classification of the ingredients in that recipe." } |
|
LLM_MODEL = 'gpt-4-1106-preview' |
|
OPEN_AI_KEY = os.environ.get('OPEN_AI_KEY') |
|
|
|
def get_empty_state(): |
|
return {"total_tokens": 0, "messages": []} |
|
|
|
def on_token_change(user_token): |
|
|
|
pass |
|
|
|
def submit_message(prompt, prompt_template, good_foods, bad_foods, temperature, max_tokens, context_length, state): |
|
|
|
history = state['messages'] |
|
|
|
if not prompt: |
|
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']}", state |
|
|
|
if not prompt_template: |
|
prompt_template = default_role |
|
system_prompt = [{ "role": "system", "content": prompt_template }] |
|
|
|
food_priming_prompt = [] |
|
if good_foods: |
|
food_priming_prompt += [{ "role": "system", "content": "Even if they are high fodmap, the following foods are known to be ok: " + good_foods + ". These ingredients can be included in any recipes that are suggested even if they are classified as high fodmap."}] |
|
if bad_foods: |
|
food_priming_prompt += [{ "role": "system", "content": "Exclude the following ingredients: " + bad_foods + ". Recipes that include these excluded ingredients should not be returned, or should be modified to not include any of the excluded ingredients."}] |
|
|
|
prompt_msg = { "role": "user", "content": prompt } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
table = "" |
|
|
|
try: |
|
|
|
|
|
client = OpenAI(api_key=OPEN_AI_KEY) |
|
messages1 = system_prompt + food_priming_prompt + history[-context_length*2:] + [prompt_msg] |
|
completion = client.chat.completions.create( |
|
model=LLM_MODEL, |
|
messages=messages1, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
stream=False) |
|
|
|
history.append(prompt_msg) |
|
answer = {'role': 'assistant', 'content': completion.choices[0].message.content } |
|
history.append(answer) |
|
|
|
state['total_tokens'] += completion.usage.total_tokens |
|
|
|
|
|
|
|
messages2 = system_prompt + food_priming_prompt + answer + [classification_msg] |
|
print('Messages') |
|
print(messages2) |
|
completion2 = client.chat.completions.create( |
|
model=LLM_MODEL, |
|
messages=messages2, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
stream=False) |
|
table = completion2.choices[0].message.content |
|
print(table) |
|
|
|
state['total_tokens'] += completion2['usage']['total_tokens'] |
|
|
|
except Exception as e: |
|
history.append(prompt_msg) |
|
history.append({ |
|
"role": "system", |
|
"content": f"Error: {e}" |
|
}) |
|
|
|
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}" |
|
|
|
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)] |
|
|
|
return '', chat_messages, total_tokens_used_msg, state, table |
|
|
|
def clear_conversation(): |
|
return gr.update(value=None, visible=True), None, "", get_empty_state(), "" |
|
|
|
|
|
css = """ |
|
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;} |
|
#chatbox {min-height: 400px;} |
|
#header {text-align: center;} |
|
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;} |
|
#label {font-size: 0.8em; padding: 0.5em; margin: 0;} |
|
.message { font-size: 1.2em; } |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
state = gr.State(get_empty_state()) |
|
|
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("""## GutWise""", |
|
elem_id="header") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=7): |
|
btn_clear_conversation = gr.Button("π Start New Conversation") |
|
input_message = gr.Textbox(show_label=False, placeholder="Enter text and press enter", visible=True) |
|
btn_submit = gr.Button("Submit") |
|
chatbot = gr.Chatbot(elem_id="chatbox") |
|
table = gr.Markdown() |
|
total_tokens_str = gr.Markdown(elem_id="total_tokens_str") |
|
with gr.Column(scale=3, min_width=100): |
|
|
|
|
|
user_token = OPEN_AI_KEY |
|
prompt_template = gr.Textbox(value=default_role, show_label=False, placeholder="Role", visible=True) |
|
good_foods = gr.Textbox(show_label=False, placeholder="Can have foods", visible=False) |
|
bad_foods = gr.Textbox(show_label=False, placeholder="Can't have foods", visible=False) |
|
with gr.Accordion("Advanced parameters", open=False): |
|
temperature = gr.Slider(minimum=0, maximum=2.0, value=0, step=0.1, label="Temperature", info="Higher = more creative/chaotic") |
|
max_tokens = gr.Slider(minimum=100, maximum=4096, value=1000, step=1, label="Max tokens per response") |
|
context_length = gr.Slider(minimum=1, maximum=10, value=2, step=1, label="Context length", info="Number of previous messages to send to the chatbot. Be careful with high values, it can blow up the token budget quickly.") |
|
|
|
btn_submit.click( |
|
submit_message, |
|
[input_message, prompt_template, good_foods, bad_foods, temperature, max_tokens, context_length, state], |
|
[input_message, chatbot, total_tokens_str, state, table]) |
|
input_message.submit( |
|
submit_message, |
|
[input_message, prompt_template, good_foods, bad_foods, temperature, max_tokens, context_length, state], |
|
[input_message, chatbot, total_tokens_str, state, table]) |
|
btn_clear_conversation.click( |
|
clear_conversation, [], |
|
[input_message, chatbot, total_tokens_str, state, table]) |
|
|
|
|
|
|
|
|
|
demo.launch(height='800px') |