venkatasg commited on
Commit
35d2d2e
·
1 Parent(s): 24fa801

Added examples and fixed errors

Browse files
Files changed (2) hide show
  1. README.md +1 -1
  2. gleu.py +35 -24
README.md CHANGED
@@ -5,7 +5,7 @@ tags:
5
  - metric
6
  description: "Generalized Language Evaluation Understanding (GLEU) is a metric initially developed for Grammatical Error Correction (GEC), that builds upon BLEU by rewarding corrections while also correctly crediting unchanged source text."
7
  sdk: gradio
8
- sdk_version: 3.19.1
9
  app_file: app.py
10
  pinned: false
11
  ---
 
5
  - metric
6
  description: "Generalized Language Evaluation Understanding (GLEU) is a metric initially developed for Grammatical Error Correction (GEC), that builds upon BLEU by rewarding corrections while also correctly crediting unchanged source text."
7
  sdk: gradio
8
+ sdk_version: 4.37.2
9
  app_file: app.py
10
  pinned: false
11
  ---
gleu.py CHANGED
@@ -18,6 +18,7 @@ import datasets
18
  from collections import Counter
19
  from math import log, exp
20
  from random import seed, randint
 
21
 
22
 
23
  # TODO: Add BibTeX citation
@@ -45,20 +46,28 @@ _DESCRIPTION = """\
45
  _KWARGS_DESCRIPTION = """
46
  Calculates how good are predictions given some references, using certain scores
47
  Args:
48
- sources: Source language reference sentences. This is assumed to be same as references if not provided
49
- references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces.
50
- predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces.
51
  Returns:
52
- gleu_score: description of the first score,
53
 
54
  Examples:
55
- Examples should be written in doctest format, and should illustrate how
56
- to use the function.
57
 
58
  >>> my_new_module = evaluate.load("my_new_module")
59
- >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
 
60
  >>> print(results)
61
- {'accuracy': 1.0}
 
 
 
 
 
 
 
 
 
62
  """
63
 
64
  # TODO: Define external resources urls if needed
@@ -171,15 +180,13 @@ class gleu(evaluate.Metric):
171
  citation=_CITATION,
172
  inputs_description=_KWARGS_DESCRIPTION,
173
  # This defines the format of each prediction and reference
174
- features=datasets.Features({
175
- 'predictions': datasets.Value('int64'),
176
- 'references': datasets.Value('int64'),
177
- }),
178
- # Homepage of the module for documentation
179
- homepage="http://module.homepage",
180
- # Additional links to the codebase or references
181
- codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
182
- reference_urls=["http://path.to.reference.url/new_module"]
183
  )
184
 
185
  def _download_and_prepare(self, dl_manager):
@@ -190,7 +197,7 @@ class gleu(evaluate.Metric):
190
  def __init__(self, order=4) :
191
  self.order = order
192
 
193
- def _compute(self, sources=None, references, predictions):
194
  """Returns the scores"""
195
 
196
  num_iterations = 500
@@ -200,11 +207,11 @@ class gleu(evaluate.Metric):
200
 
201
  gleu_calculator = GLEU(self.order)
202
 
203
- if sources:
204
- gleu_calculator.load_sources(sources)
205
- else:
206
- gleu_calculator.load_sources(references)
207
-
208
  gleu_calculator.load_references(references)
209
 
210
  # first generate a random list of indices, using a different seed
@@ -231,4 +238,8 @@ class gleu(evaluate.Metric):
231
  stats_by_ref[ref] = this_stats
232
 
233
  iter_stats[j] = [sum(scores) or scores in zip(iter_stats[j], this_stats)]
234
-
 
 
 
 
 
18
  from collections import Counter
19
  from math import log, exp
20
  from random import seed, randint
21
+ import ipdb
22
 
23
 
24
  # TODO: Add BibTeX citation
 
46
  _KWARGS_DESCRIPTION = """
47
  Calculates how good are predictions given some references, using certain scores
48
  Args:
49
+ sources: Source language reference sentences. This is assumed to be same as references if not provided.
50
+ references: Reference for each prediction. Each reference should be a string with tokens separated by spaces.
51
+ predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces.
52
  Returns:
53
+ gleu_score: Average gleu_score over all predictions.
54
 
55
  Examples:
 
 
56
 
57
  >>> my_new_module = evaluate.load("my_new_module")
58
+ >>> references=["We may in actual fact be communicating with a hoax Facebook acccount of a cyberfriend , which we assume to be real but in reality , it is a fake account ."]
59
+ >>> results = my_new_module.compute(references=references, predictions=["We may of actual fact communicating with a hoax Facebook acccount of a cyber friend , which we assumed to be real but in reality , it is a fake account ."])
60
  >>> print(results)
61
+ {'gleu_score': 0.6}
62
+
63
+ >>> results = my_new_module.compute(references=references, predictions=["We may be in actual fact communicating with a hoax Facebook acccount of a cyber friend , we assume to be real but in reality , it is a fake account ."])
64
+ >>> print(results)
65
+ {'gleu_score': 0.62}
66
+
67
+ >>> results = my_new_module.compute(references=references, predictions=["We may in actual fact communicating with a hoax Facebook account of a cyber friend , which we assume to be real but in reality , it is a fake accounts ."])
68
+ >>> print(results)
69
+ {'gleu_score': 0.64}
70
+
71
  """
72
 
73
  # TODO: Define external resources urls if needed
 
180
  citation=_CITATION,
181
  inputs_description=_KWARGS_DESCRIPTION,
182
  # This defines the format of each prediction and reference
183
+ features=datasets.Features(
184
+ {
185
+ "predictions": datasets.Value("string", id="sequence"),
186
+ "references": datasets.Value("string", id="sequence"),
187
+ }
188
+ ),
189
+ codebase_urls=["https://github.com/cnap/gec-ranking/"],
 
 
190
  )
191
 
192
  def _download_and_prepare(self, dl_manager):
 
197
  def __init__(self, order=4) :
198
  self.order = order
199
 
200
+ def _compute(self, references, predictions):
201
  """Returns the scores"""
202
 
203
  num_iterations = 500
 
207
 
208
  gleu_calculator = GLEU(self.order)
209
 
210
+ # if sources:
211
+ # gleu_calculator.load_sources(sources)
212
+ # else:
213
+ #
214
+ gleu_calculator.load_sources(references)
215
  gleu_calculator.load_references(references)
216
 
217
  # first generate a random list of indices, using a different seed
 
238
  stats_by_ref[ref] = this_stats
239
 
240
  iter_stats[j] = [sum(scores) or scores in zip(iter_stats[j], this_stats)]
241
+
242
+ final_gleu_score = get_gleu_stats([gleu_calculator.compute_gleu(stats)
243
+ for stats in iter_stats ])[0]
244
+ ipdb.set_trace()
245
+ return return {"gleu_score": final_gleu_score}