venite's picture
initial
f670afc
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import random
from imaginaire.datasets.base import BaseDataset
class Dataset(BaseDataset):
r"""Image dataset for use in class conditional GAN.
Args:
cfg (Config): Loaded config object.
is_inference (bool): In train or inference mode?
"""
def __init__(self, cfg, is_inference=False, is_test=False):
self.paired = False
super(Dataset, self).__init__(cfg, is_inference, is_test)
self.num_classes = len(self.class_name_to_idx['images'])
self.sample_class_idx = None
def set_sample_class_idx(self, class_idx):
r"""Set sample class idx. This is not used in this class...
Args:
class_idx (int): Which class idx to sample from.
"""
self.sample_class_idx = class_idx
self.epoch_length = \
max([len(lmdb_keys) for _, lmdb_keys in self.mapping.items()])
def _create_mapping(self):
r"""Creates mapping from idx to key in LMDB.
Returns:
(tuple):
- self.mapping (dict): Dict with data type as key mapping idx to
LMDB key.
- self.epoch_length (int): Number of samples in an epoch.
"""
idx_to_key, class_names = {}, {}
for lmdb_idx, sequence_list in enumerate(self.sequence_lists):
for data_type, data_type_sequence_list in sequence_list.items():
class_names[data_type] = []
if data_type not in idx_to_key:
idx_to_key[data_type] = []
for sequence_name, filenames in data_type_sequence_list.items():
class_name = sequence_name.split('/')[0]
for filename in filenames:
idx_to_key[data_type].append({
'lmdb_root': self.lmdb_roots[lmdb_idx],
'lmdb_idx': lmdb_idx,
'sequence_name': sequence_name,
'filename': filename,
'class_name': class_name
})
class_names[data_type].append(class_name)
self.mapping = idx_to_key
self.epoch_length = max([len(lmdb_keys)
for _, lmdb_keys in self.mapping.items()])
# Create mapping from class name to class idx.
self.class_name_to_idx = {}
for data_type, class_names_data_type in class_names.items():
self.class_name_to_idx[data_type] = {}
class_names_data_type = sorted(list(set(class_names_data_type)))
for class_idx, class_name in enumerate(class_names_data_type):
self.class_name_to_idx[data_type][class_name] = class_idx
# Add class idx to mapping.
for data_type in self.mapping:
for key in self.mapping[data_type]:
key['class_idx'] = \
self.class_name_to_idx[data_type][key['class_name']]
# Create a mapping from index to lmdb key for each class.
idx_to_key_class = {}
for data_type in self.mapping:
idx_to_key_class[data_type] = {}
for class_idx, class_name in enumerate(class_names[data_type]):
idx_to_key_class[data_type][class_idx] = []
for key in self.mapping[data_type]:
idx_to_key_class[data_type][key['class_idx']].append(key)
self.mapping_class = idx_to_key_class
return self.mapping, self.epoch_length
def _sample_keys(self, index):
r"""Gets files to load for this sample.
Args:
index (int): Index in [0, len(dataset)].
Returns:
keys (dict): Each key of this dict is a data type.
- lmdb_key (dict):
- lmdb_idx (int): Chosen LMDB dataset root.
- sequence_name (str): Chosen sequence in chosen dataset.
- filename (str): Chosen filename in chosen sequence.
"""
keys = {}
if self.is_inference: # evaluation mode
lmdb_keys = self.mapping['images']
keys['images'] = lmdb_keys[index % len(lmdb_keys)]
else:
lmdb_keys = self.mapping['images']
keys['images'] = random.choice(lmdb_keys)
return keys
def __getitem__(self, index):
r"""Gets selected files.
Args:
index (int): Index into dataset.
concat (bool): Concatenate all items in labels?
Returns:
data (dict): Dict with all chosen data_types.
"""
# Select a sample from the available data.
keys_per_data_type = self._sample_keys(index)
# Get class idx into a list.
class_idxs = []
for data_type in keys_per_data_type:
class_idxs.append(keys_per_data_type[data_type]['class_idx'])
# Get keys and lmdbs.
keys, lmdbs = {}, {}
for data_type in self.dataset_data_types:
# Unpack keys.
lmdb_idx = keys_per_data_type[data_type]['lmdb_idx']
sequence_name = keys_per_data_type[data_type]['sequence_name']
filename = keys_per_data_type[data_type]['filename']
keys[data_type] = '%s/%s' % (sequence_name, filename)
lmdbs[data_type] = self.lmdbs[data_type][lmdb_idx]
# Load all data for this index.
data = self.load_from_dataset(keys, lmdbs)
# Apply ops pre augmentation.
data = self.apply_ops(data, self.pre_aug_ops)
# Do augmentations for images.
data, is_flipped = self.perform_augmentation(data, paired=False, augment_ops=self.augmentor.augment_ops)
# Apply ops post augmentation.
data = self.apply_ops(data, self.post_aug_ops)
data = self.apply_ops(data, self.full_data_post_aug_ops,
full_data=True)
# Convert images to tensor.
for data_type in self.image_data_types:
for idx in range(len(data[data_type])):
data[data_type][idx] = \
data[data_type][idx][:, :, :self.num_channels[data_type]]
data = self.to_tensor(data)
# Remove any extra dimensions.
for data_type in self.image_data_types:
data[data_type] = data[data_type][0]
# Package output.
data['is_flipped'] = is_flipped
data['key'] = keys_per_data_type
data['labels'] = class_idxs[0]
return data