Spaces:
Runtime error
Runtime error
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# This work is made available under the Nvidia Source Code License-NC. | |
# To view a copy of this license, check out LICENSE.md | |
import random | |
from imaginaire.datasets.base import BaseDataset | |
class Dataset(BaseDataset): | |
r"""Image dataset for use in class conditional GAN. | |
Args: | |
cfg (Config): Loaded config object. | |
is_inference (bool): In train or inference mode? | |
""" | |
def __init__(self, cfg, is_inference=False, is_test=False): | |
self.paired = False | |
super(Dataset, self).__init__(cfg, is_inference, is_test) | |
self.num_classes = len(self.class_name_to_idx['images']) | |
self.sample_class_idx = None | |
def set_sample_class_idx(self, class_idx): | |
r"""Set sample class idx. This is not used in this class... | |
Args: | |
class_idx (int): Which class idx to sample from. | |
""" | |
self.sample_class_idx = class_idx | |
self.epoch_length = \ | |
max([len(lmdb_keys) for _, lmdb_keys in self.mapping.items()]) | |
def _create_mapping(self): | |
r"""Creates mapping from idx to key in LMDB. | |
Returns: | |
(tuple): | |
- self.mapping (dict): Dict with data type as key mapping idx to | |
LMDB key. | |
- self.epoch_length (int): Number of samples in an epoch. | |
""" | |
idx_to_key, class_names = {}, {} | |
for lmdb_idx, sequence_list in enumerate(self.sequence_lists): | |
for data_type, data_type_sequence_list in sequence_list.items(): | |
class_names[data_type] = [] | |
if data_type not in idx_to_key: | |
idx_to_key[data_type] = [] | |
for sequence_name, filenames in data_type_sequence_list.items(): | |
class_name = sequence_name.split('/')[0] | |
for filename in filenames: | |
idx_to_key[data_type].append({ | |
'lmdb_root': self.lmdb_roots[lmdb_idx], | |
'lmdb_idx': lmdb_idx, | |
'sequence_name': sequence_name, | |
'filename': filename, | |
'class_name': class_name | |
}) | |
class_names[data_type].append(class_name) | |
self.mapping = idx_to_key | |
self.epoch_length = max([len(lmdb_keys) | |
for _, lmdb_keys in self.mapping.items()]) | |
# Create mapping from class name to class idx. | |
self.class_name_to_idx = {} | |
for data_type, class_names_data_type in class_names.items(): | |
self.class_name_to_idx[data_type] = {} | |
class_names_data_type = sorted(list(set(class_names_data_type))) | |
for class_idx, class_name in enumerate(class_names_data_type): | |
self.class_name_to_idx[data_type][class_name] = class_idx | |
# Add class idx to mapping. | |
for data_type in self.mapping: | |
for key in self.mapping[data_type]: | |
key['class_idx'] = \ | |
self.class_name_to_idx[data_type][key['class_name']] | |
# Create a mapping from index to lmdb key for each class. | |
idx_to_key_class = {} | |
for data_type in self.mapping: | |
idx_to_key_class[data_type] = {} | |
for class_idx, class_name in enumerate(class_names[data_type]): | |
idx_to_key_class[data_type][class_idx] = [] | |
for key in self.mapping[data_type]: | |
idx_to_key_class[data_type][key['class_idx']].append(key) | |
self.mapping_class = idx_to_key_class | |
return self.mapping, self.epoch_length | |
def _sample_keys(self, index): | |
r"""Gets files to load for this sample. | |
Args: | |
index (int): Index in [0, len(dataset)]. | |
Returns: | |
keys (dict): Each key of this dict is a data type. | |
- lmdb_key (dict): | |
- lmdb_idx (int): Chosen LMDB dataset root. | |
- sequence_name (str): Chosen sequence in chosen dataset. | |
- filename (str): Chosen filename in chosen sequence. | |
""" | |
keys = {} | |
if self.is_inference: # evaluation mode | |
lmdb_keys = self.mapping['images'] | |
keys['images'] = lmdb_keys[index % len(lmdb_keys)] | |
else: | |
lmdb_keys = self.mapping['images'] | |
keys['images'] = random.choice(lmdb_keys) | |
return keys | |
def __getitem__(self, index): | |
r"""Gets selected files. | |
Args: | |
index (int): Index into dataset. | |
concat (bool): Concatenate all items in labels? | |
Returns: | |
data (dict): Dict with all chosen data_types. | |
""" | |
# Select a sample from the available data. | |
keys_per_data_type = self._sample_keys(index) | |
# Get class idx into a list. | |
class_idxs = [] | |
for data_type in keys_per_data_type: | |
class_idxs.append(keys_per_data_type[data_type]['class_idx']) | |
# Get keys and lmdbs. | |
keys, lmdbs = {}, {} | |
for data_type in self.dataset_data_types: | |
# Unpack keys. | |
lmdb_idx = keys_per_data_type[data_type]['lmdb_idx'] | |
sequence_name = keys_per_data_type[data_type]['sequence_name'] | |
filename = keys_per_data_type[data_type]['filename'] | |
keys[data_type] = '%s/%s' % (sequence_name, filename) | |
lmdbs[data_type] = self.lmdbs[data_type][lmdb_idx] | |
# Load all data for this index. | |
data = self.load_from_dataset(keys, lmdbs) | |
# Apply ops pre augmentation. | |
data = self.apply_ops(data, self.pre_aug_ops) | |
# Do augmentations for images. | |
data, is_flipped = self.perform_augmentation(data, paired=False, augment_ops=self.augmentor.augment_ops) | |
# Apply ops post augmentation. | |
data = self.apply_ops(data, self.post_aug_ops) | |
data = self.apply_ops(data, self.full_data_post_aug_ops, | |
full_data=True) | |
# Convert images to tensor. | |
for data_type in self.image_data_types: | |
for idx in range(len(data[data_type])): | |
data[data_type][idx] = \ | |
data[data_type][idx][:, :, :self.num_channels[data_type]] | |
data = self.to_tensor(data) | |
# Remove any extra dimensions. | |
for data_type in self.image_data_types: | |
data[data_type] = data[data_type][0] | |
# Package output. | |
data['is_flipped'] = is_flipped | |
data['key'] = keys_per_data_type | |
data['labels'] = class_idxs[0] | |
return data | |