Spaces:
Runtime error
Runtime error
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# This work is made available under the Nvidia Source Code License-NC. | |
# To view a copy of this license, check out LICENSE.md | |
import torch | |
from torch.nn import init | |
def weights_init(init_type='normal', gain=0.02, bias=None): | |
r"""Initialize weights in the network. | |
Args: | |
init_type (str): The name of the initialization scheme. | |
gain (float): The parameter that is required for the initialization | |
scheme. | |
bias (object): If not ``None``, specifies the initialization parameter | |
for bias. | |
Returns: | |
(obj): init function to be applied. | |
""" | |
def init_func(m): | |
r"""Init function | |
Args: | |
m: module to be weight initialized. | |
""" | |
class_name = m.__class__.__name__ | |
if hasattr(m, 'weight') and ( | |
class_name.find('Conv') != -1 or | |
class_name.find('Linear') != -1 or | |
class_name.find('Embedding') != -1): | |
lr_mul = getattr(m, 'lr_mul', 1.) | |
gain_final = gain / lr_mul | |
if init_type == 'normal': | |
init.normal_(m.weight.data, 0.0, gain_final) | |
elif init_type == 'xavier': | |
init.xavier_normal_(m.weight.data, gain=gain_final) | |
elif init_type == 'xavier_uniform': | |
init.xavier_uniform_(m.weight.data, gain=gain_final) | |
elif init_type == 'kaiming': | |
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') | |
with torch.no_grad(): | |
m.weight.data *= gain_final | |
elif init_type == 'kaiming_linear': | |
init.kaiming_normal_( | |
m.weight.data, a=0, mode='fan_in', nonlinearity='linear' | |
) | |
with torch.no_grad(): | |
m.weight.data *= gain_final | |
elif init_type == 'orthogonal': | |
init.orthogonal_(m.weight.data, gain=gain_final) | |
elif init_type == 'none': | |
pass | |
# m.reset_parameters() | |
else: | |
raise NotImplementedError( | |
'initialization method [%s] is ' | |
'not implemented' % init_type) | |
if hasattr(m, 'bias') and m.bias is not None: | |
if init_type == 'none': | |
pass | |
elif bias is not None: | |
bias_type = getattr(bias, 'type', 'normal') | |
if bias_type == 'normal': | |
bias_gain = getattr(bias, 'gain', 0.5) | |
init.normal_(m.bias.data, 0.0, bias_gain) | |
else: | |
raise NotImplementedError( | |
'initialization method [%s] is ' | |
'not implemented' % bias_type) | |
else: | |
init.constant_(m.bias.data, 0.0) | |
return init_func | |
def weights_rescale(): | |
def init_func(m): | |
if hasattr(m, 'init_gain'): | |
for name, p in m.named_parameters(): | |
if 'output_scale' not in name: | |
p.data.mul_(m.init_gain) | |
return init_func | |