sat3density / imaginaire /utils /init_weight.py
venite's picture
initial
f670afc
raw
history blame
3.17 kB
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import torch
from torch.nn import init
def weights_init(init_type='normal', gain=0.02, bias=None):
r"""Initialize weights in the network.
Args:
init_type (str): The name of the initialization scheme.
gain (float): The parameter that is required for the initialization
scheme.
bias (object): If not ``None``, specifies the initialization parameter
for bias.
Returns:
(obj): init function to be applied.
"""
def init_func(m):
r"""Init function
Args:
m: module to be weight initialized.
"""
class_name = m.__class__.__name__
if hasattr(m, 'weight') and (
class_name.find('Conv') != -1 or
class_name.find('Linear') != -1 or
class_name.find('Embedding') != -1):
lr_mul = getattr(m, 'lr_mul', 1.)
gain_final = gain / lr_mul
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain_final)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain_final)
elif init_type == 'xavier_uniform':
init.xavier_uniform_(m.weight.data, gain=gain_final)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
with torch.no_grad():
m.weight.data *= gain_final
elif init_type == 'kaiming_linear':
init.kaiming_normal_(
m.weight.data, a=0, mode='fan_in', nonlinearity='linear'
)
with torch.no_grad():
m.weight.data *= gain_final
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain_final)
elif init_type == 'none':
pass
# m.reset_parameters()
else:
raise NotImplementedError(
'initialization method [%s] is '
'not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
if init_type == 'none':
pass
elif bias is not None:
bias_type = getattr(bias, 'type', 'normal')
if bias_type == 'normal':
bias_gain = getattr(bias, 'gain', 0.5)
init.normal_(m.bias.data, 0.0, bias_gain)
else:
raise NotImplementedError(
'initialization method [%s] is '
'not implemented' % bias_type)
else:
init.constant_(m.bias.data, 0.0)
return init_func
def weights_rescale():
def init_func(m):
if hasattr(m, 'init_gain'):
for name, p in m.named_parameters():
if 'output_scale' not in name:
p.data.mul_(m.init_gain)
return init_func