Embedded / back_end /models /embedding_model.py
velmurugan1122's picture
cousin method
ad471a0
raw
history blame contribute delete
414 Bytes
# back_end/models/embedding_model.py
from sentence_transformers import SentenceTransformer
# Load the pre-trained embedding model
model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
def generate_embedding(text: str):
"""Generate a 768-dimensional embedding for the input text."""
embedding = model.encode(text).tolist() # Convert NumPy array to list
return embedding