Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_extras.switch_page_button import switch_page | |
st.title("OneFormer") | |
st.success("""[Original tweet](https://twitter.com/mervenoyann/status/1739707076501221608) (December 26, 2023)""", icon="βΉοΈ") | |
st.markdown(""" """) | |
st.markdown(""" | |
OneFormer: one model to segment them all? π€― | |
I was looking into paperswithcode leaderboards when I came across OneFormer for the first time so it was time to dig in! | |
""") | |
st.markdown(""" """) | |
st.image("pages/OneFormer/image_1.jpeg", use_column_width=True) | |
st.markdown(""" """) | |
st.markdown("""OneFormer is a "truly universal" model for semantic, instance and panoptic segmentation tasks βοΈ | |
What makes is truly universal is that it's a single model that is trained only once and can be used across all tasks π | |
""") | |
st.markdown(""" """) | |
st.image("pages/OneFormer/image_2.jpeg", use_column_width=True) | |
st.markdown(""" """) | |
st.markdown(""" | |
The enabler here is the text conditioning, i.e. the model is given a text query that states task type along with the appropriate input, and using contrastive loss, the model learns the difference between different task types π | |
""") | |
st.markdown(""" """) | |
st.image("pages/OneFormer/image_3.jpeg", use_column_width=True) | |
st.markdown(""" """) | |
st.markdown("""Thanks to π€ Transformers, you can easily use the model! | |
I have drafted a [notebook](https://t.co/cBylk1Uv20) for you to try right away π | |
You can also check out the [Space](https://t.co/31GxlVo1W5) without checking out the code itself. | |
""") | |
st.markdown(""" """) | |
st.image("pages/OneFormer/image_4.jpeg", use_column_width=True) | |
st.markdown(""" """) | |
st.info(""" | |
Ressources: | |
[OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) | |
by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi (2022) | |
[GitHub](https://github.com/SHI-Labs/OneFormer) | |
[Hugging Face documentation](https://huggingface.co/docs/transformers/model_doc/oneformer)""", icon="π") | |
st.markdown(""" """) | |
st.markdown(""" """) | |
st.markdown(""" """) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
if st.button('Previous paper', use_container_width=True): | |
switch_page("MobileSAM") | |
with col2: | |
if st.button('Home', use_container_width=True): | |
switch_page("Home") | |
with col3: | |
if st.button('Next paper', use_container_width=True): | |
switch_page("VITMAE") |