leaderboard / src /backend /run_eval_suite.py
Miaoran000's picture
minor updates in publishing and logging results
2b9835a
raw
history blame
2.95 kB
import json
import os
import logging
from datetime import datetime
import src.envs as envs
from src.backend.manage_requests import EvalRequest
from src.backend.evaluate_model import Evaluator
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
logging.getLogger("openai").setLevel(logging.WARNING)
def run_evaluation(eval_request: EvalRequest, batch_size, device,
local_dir: str, results_repo: str, no_cache=True, limit=None,
need_check=True, write_results=False):
"""
Run the evaluation for a given model and upload the results.
Args:
eval_request (EvalRequest): The evaluation request object containing model details.
num_fewshot (int): Number of few-shot examples.
batch_size (int): Batch size for processing.
device (str): The device to run the evaluation on.
local_dir (str): Local directory path for saving results.
results_repo (str): Repository ID where results will be uploaded.
no_cache (bool): Whether to disable caching.
limit (int, optional): Limit on the number of items to process. Use with caution.
Returns:
dict: A dictionary containing evaluation results.
"""
if limit:
logging.warning("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
output_folder = os.path.join(local_dir, *eval_request.model.split("/"))
# if os.path.exists(output_folder):
# f_name = os.listdir(output_folder)[-1]
# print(f"Loading results from {os.path.join(output_folder, f_name)}")
# results = json.loads(os.path.join(output_folder, f_name))
# dumped = json.dumps(results, indent=2)
# logging.info(dumped)
# else:
try:
evaluator = Evaluator(eval_request.model, eval_request.revision, eval_request.precision,
batch_size, device, no_cache, limit, write_out=True,
output_base_path='logs')
results = evaluator.evaluate()
evaluator.write_results()
except Exception as e:
logging.error(f"Error during evaluation: {e}")
raise
dumped = json.dumps(results, indent=2)
logging.info(dumped)
output_path = os.path.join(output_folder,
f"results_{datetime.now()}.json") #
os.makedirs(output_folder, exist_ok=True)
with open(output_path, "w") as f:
f.write(dumped)
print(f"Results have been saved to{output_path}")
if not need_check:
print("Path in the repo:", f"{eval_request.model}/results_{datetime.now()}.json")
envs.API.upload_file(
path_or_fileobj=output_path,
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
repo_id=results_repo,
repo_type="dataset",
)
return results