Spaces:
Running
on
Zero
Running
on
Zero
Vadim Borisov
commited on
Commit
β’
3ef995c
1
Parent(s):
7997069
Update app.py
Browse files
app.py
CHANGED
@@ -3,23 +3,20 @@ import spaces
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
6 |
-
# Initialize GPU
|
7 |
zero = torch.Tensor([0]).cuda()
|
8 |
print(f"Initial device: {zero.device}")
|
9 |
|
10 |
# Load model and tokenizer
|
11 |
model_name = "tabularisai/robust-sentiment-analysis"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
14 |
-
|
15 |
-
# Move model to GPU
|
16 |
-
model = model.to(zero.device)
|
17 |
|
18 |
@spaces.GPU
|
19 |
-
def predict_sentiment(text):
|
20 |
print(f"Device inside function: {zero.device}")
|
21 |
-
|
22 |
-
inputs =
|
23 |
|
24 |
with torch.no_grad():
|
25 |
outputs = model(**inputs)
|
@@ -28,15 +25,37 @@ def predict_sentiment(text):
|
|
28 |
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
29 |
|
30 |
sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"}
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
# Gradio interface
|
34 |
demo = gr.Interface(
|
35 |
fn=predict_sentiment,
|
36 |
-
inputs=
|
37 |
-
|
|
|
|
|
|
|
38 |
title="π Sentiment Analysis Wizard",
|
39 |
-
description="Discover the emotional tone behind any text with our advanced AI model!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
|
42 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
6 |
+
# Initialize GPU tensor
|
7 |
zero = torch.Tensor([0]).cuda()
|
8 |
print(f"Initial device: {zero.device}")
|
9 |
|
10 |
# Load model and tokenizer
|
11 |
model_name = "tabularisai/robust-sentiment-analysis"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name).cuda()
|
|
|
|
|
|
|
14 |
|
15 |
@spaces.GPU
|
16 |
+
def predict_sentiment(text, show_probabilities=False):
|
17 |
print(f"Device inside function: {zero.device}")
|
18 |
+
|
19 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(zero.device)
|
20 |
|
21 |
with torch.no_grad():
|
22 |
outputs = model(**inputs)
|
|
|
25 |
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
26 |
|
27 |
sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"}
|
28 |
+
predicted_sentiment = sentiment_map[predicted_class]
|
29 |
+
|
30 |
+
confidence = probabilities[0][predicted_class].item()
|
31 |
+
|
32 |
+
result = f"Sentiment: {predicted_sentiment}\nConfidence: {confidence:.2%}\n\n"
|
33 |
+
|
34 |
+
if show_probabilities:
|
35 |
+
result += "Probabilities for each class:\n"
|
36 |
+
for i, (sentiment, prob) in enumerate(zip(sentiment_map.values(), probabilities[0])):
|
37 |
+
result += f"{sentiment}: {prob.item():.2%}\n"
|
38 |
+
|
39 |
+
return result
|
40 |
|
41 |
+
# Create Gradio interface
|
42 |
demo = gr.Interface(
|
43 |
fn=predict_sentiment,
|
44 |
+
inputs=[
|
45 |
+
gr.Textbox(lines=5, label="Enter text for sentiment analysis"),
|
46 |
+
gr.Checkbox(label="Show probabilities for each class")
|
47 |
+
],
|
48 |
+
outputs=gr.Textbox(label="Result"),
|
49 |
title="π Sentiment Analysis Wizard",
|
50 |
+
description="Discover the emotional tone behind any text with our advanced AI model! This app uses a state-of-the-art language model to analyze the sentiment of your text, classifying it into one of five categories: Very Negative, Negative, Neutral, Positive, or Very Positive.",
|
51 |
+
examples=[
|
52 |
+
["I absolutely loved this movie! The acting was superb and the plot was engaging.", True],
|
53 |
+
["The service at this restaurant was terrible. I'll never go back.", False],
|
54 |
+
["The product works as expected. Nothing special, but it gets the job done.", True],
|
55 |
+
["I'm somewhat disappointed with my purchase. It's not as good as I hoped.", False],
|
56 |
+
["This book changed my life! I couldn't put it down and learned so much.", True]
|
57 |
+
],
|
58 |
+
theme=gr.themes.Soft()
|
59 |
)
|
60 |
|
61 |
demo.launch()
|