|
import os |
|
import json |
|
import copy |
|
import time |
|
import random |
|
import logging |
|
import numpy as np |
|
from typing import Any, Dict, List, Optional, Union |
|
import gradio as gr |
|
import logging |
|
import torch |
|
from PIL import Image |
|
import spaces |
|
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image |
|
from diffusers.utils import load_image |
|
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download |
|
import requests |
|
import pandas as pd |
|
|
|
from transformers.utils import move_cache |
|
move_cache() |
|
|
|
from diffusers import ( |
|
DiffusionPipeline, |
|
AutoencoderTiny, |
|
AutoencoderKL, |
|
AutoPipelineForImage2Image, |
|
FluxPipeline, |
|
FlowMatchEulerDiscreteScheduler) |
|
|
|
from huggingface_hub import ( |
|
hf_hub_download, |
|
HfFileSystem, |
|
ModelCard, |
|
snapshot_download) |
|
|
|
from diffusers.utils import load_image |
|
|
|
from huggingface_hub import HfApi |
|
token = os.getenv("HF_TOKEN") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_shift( |
|
image_seq_len, |
|
base_seq_len: int = 256, |
|
max_seq_len: int = 4096, |
|
base_shift: float = 0.5, |
|
max_shift: float = 1.16, |
|
): |
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
b = base_shift - m * base_seq_len |
|
mu = image_seq_len * m + b |
|
return mu |
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Apenas um entre `timesteps` ou `sigmas` pode ser passado. Por favor, escolha um para definir valores personalizados") |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
@torch.inference_mode() |
|
def flux_pipe_call_that_returns_an_iterable_of_images( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
max_sequence_length: int = 512, |
|
good_vae: Optional[Any] = None, |
|
): |
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
device = self._execution_device |
|
|
|
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None |
|
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas, |
|
mu=mu, |
|
) |
|
self._num_timesteps = len(timesteps) |
|
|
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None |
|
|
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents_for_image, return_dict=False)[0] |
|
yield self.image_processor.postprocess(image, output_type=output_type)[0] |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
torch.cuda.empty_cache() |
|
|
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor |
|
image = good_vae.decode(latents, return_dict=False)[0] |
|
self.maybe_free_model_hooks() |
|
torch.cuda.empty_cache() |
|
yield self.image_processor.postprocess(image, output_type=output_type)[0] |
|
|
|
|
|
loras = [ |
|
|
|
{ |
|
"image": "https://huggingface.co/Collos/Jalves/resolve/main/images/jose.webp", |
|
"title": "Jose Alves", |
|
"repo": "Collos/Jalves", |
|
"weights": "Jalves.safetensors", |
|
"trigger_word": "José Alves" |
|
}, |
|
{ |
|
"image": "https://huggingface.co/Collos/JulioCesar/resolve/main/images/WhatsApp%20Image%202024-12-10%20at%2009.33.50.jpeg", |
|
"title": "Júlio César", |
|
"repo": "Collos/JulioCesar", |
|
"weights": "julio.safetensorss", |
|
"trigger_word": "Júlio" |
|
}, |
|
{ |
|
"image": "https://huggingface.co/Collos/PedroJr/resolve/main/images/WhatsApp%20Image%202024-12-10%20at%2009.34.01.jpeg", |
|
"title": "Pedro Jr.", |
|
"repo": "Collos/PedroJr", |
|
"weights": "pedrojr.safetensors", |
|
"trigger_word": "Pedro" |
|
}, |
|
{ |
|
"image": "https://huggingface.co/Collos/JoseClovis/resolve/main/images/WhatsApp%20Image%202024-12-10%20at%2009.38.50.jpeg", |
|
"title": "José Clóvis", |
|
"repo": "Collos/JoseClovis", |
|
"weights": "clovis.safetensors", |
|
"trigger_word": "Clóvis" |
|
} |
|
|
|
|
|
] |
|
|
|
|
|
use_auth_token=True |
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
|
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) |
|
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) |
|
pipe_i2i = AutoPipelineForImage2Image.from_pretrained( |
|
base_model, |
|
vae=good_vae, |
|
transformer=pipe.transformer, |
|
text_encoder=pipe.text_encoder, |
|
tokenizer=pipe.tokenizer, |
|
text_encoder_2=pipe.text_encoder_2, |
|
tokenizer_2=pipe.tokenizer_2, |
|
torch_dtype=dtype |
|
) |
|
|
|
|
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) |
|
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) |
|
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model, |
|
vae=good_vae, |
|
transformer=pipe.transformer, |
|
text_encoder=pipe.text_encoder, |
|
tokenizer=pipe.tokenizer, |
|
text_encoder_2=pipe.text_encoder_2, |
|
tokenizer_2=pipe.tokenizer_2, |
|
torch_dtype=dtype |
|
) |
|
|
|
MAX_SEED = 2**32-1 |
|
|
|
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) |
|
|
|
class calculateDuration: |
|
def __init__(self, activity_name=""): |
|
self.activity_name = activity_name |
|
|
|
def __enter__(self): |
|
self.start_time = time.time() |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.end_time = time.time() |
|
self.elapsed_time = self.end_time - self.start_time |
|
if self.activity_name: |
|
print(f"tempo passado para {self.activity_name}: {self.elapsed_time:.6f} segundos") |
|
else: |
|
print(f"tempo passado: {self.elapsed_time:.6f} segundos") |
|
|
|
def update_selection(evt: gr.SelectData, width, height): |
|
selected_lora = loras[evt.index] |
|
new_placeholder = f"Digite o prompt para {selected_lora['title']}, de preferência em inglês." |
|
lora_repo = selected_lora["repo"] |
|
updated_text = f"### Selecionado: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" |
|
if "aspect" in selected_lora: |
|
if selected_lora["aspect"] == "retrato": |
|
width = 768 |
|
height = 1024 |
|
elif selected_lora["aspect"] == "paisagem": |
|
width = 1024 |
|
height = 768 |
|
else: |
|
width = 1024 |
|
height = 1024 |
|
return ( |
|
gr.update(placeholder=new_placeholder), |
|
updated_text, |
|
evt.index, |
|
width, |
|
height, |
|
) |
|
|
|
@spaces.GPU(duration=100) |
|
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress): |
|
pipe.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
with calculateDuration("Generating image"): |
|
|
|
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( |
|
prompt=prompt_mash, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
output_type="pil", |
|
good_vae=good_vae, |
|
): |
|
yield img |
|
|
|
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed): |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
pipe_i2i.to("cuda") |
|
image_input = load_image(image_input_path) |
|
final_image = pipe_i2i( |
|
prompt=prompt_mash, |
|
image=image_input, |
|
strength=image_strength, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
output_type="pil", |
|
).images[0] |
|
return final_image |
|
|
|
@spaces.GPU(duration=100) |
|
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): |
|
if selected_index is None: |
|
raise gr.Error("Selecione um modelo para continuar.") |
|
selected_lora = loras[selected_index] |
|
lora_path = selected_lora["repo"] |
|
trigger_word = selected_lora["trigger_word"] |
|
if(trigger_word): |
|
if "trigger_position" in selected_lora: |
|
if selected_lora["trigger_position"] == "prepend": |
|
prompt_mash = f"{trigger_word} {prompt}" |
|
else: |
|
prompt_mash = f"{prompt} {trigger_word}" |
|
else: |
|
prompt_mash = f"{trigger_word} {prompt}" |
|
else: |
|
prompt_mash = prompt |
|
|
|
with calculateDuration("Carregando Modelo"): |
|
pipe.unload_lora_weights() |
|
pipe_i2i.unload_lora_weights() |
|
|
|
|
|
with calculateDuration(f"Carregando modelo para {selected_lora['title']}"): |
|
pipe_to_use = pipe_i2i if image_input is not None else pipe |
|
weight_name = selected_lora.get("Pesos", None) |
|
|
|
pipe_to_use.load_lora_weights( |
|
lora_path, |
|
weight_name=weight_name, |
|
low_cpu_mem_usage=True |
|
) |
|
|
|
with calculateDuration("Gerando fontes"): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
if(image_input is not None): |
|
|
|
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed) |
|
yield final_image, seed, gr.update(visible=False) |
|
else: |
|
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress) |
|
|
|
final_image = None |
|
step_counter = 0 |
|
for image in image_generator: |
|
step_counter+=1 |
|
final_image = image |
|
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' |
|
yield image, seed, gr.update(value=progress_bar, visible=True) |
|
|
|
yield final_image, seed, gr.update(value=progress_bar, visible=False) |
|
|
|
def get_huggingface_safetensors(link): |
|
split_link = link.split("/") |
|
if(len(split_link) == 2): |
|
model_card = ModelCard.load(link) |
|
base_model = model_card.data.get("base_model") |
|
print(base_model) |
|
|
|
|
|
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")): |
|
raise Exception("Flux LoRA Not Found!") |
|
|
|
|
|
|
|
|
|
|
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None |
|
fs = HfFileSystem() |
|
try: |
|
list_of_files = fs.ls(link, detail=False) |
|
for file in list_of_files: |
|
if(file.endswith(".safetensors")): |
|
safetensors_name = file.split("/")[-1] |
|
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))): |
|
image_elements = file.split("/") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" |
|
except Exception as e: |
|
print(e) |
|
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") |
|
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") |
|
return split_link[1], link, safetensors_name, trigger_word, image_url |
|
|
|
def check_custom_model(link): |
|
if(link.startswith("https://")): |
|
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")): |
|
link_split = link.split("huggingface.co/") |
|
return get_huggingface_safetensors(link_split[1]) |
|
else: |
|
return get_huggingface_safetensors(link) |
|
|
|
def add_custom_lora(custom_lora): |
|
global loras |
|
if custom_lora: |
|
try: |
|
title, repo, path, trigger_word, image = check_custom_model(custom_lora) |
|
print(f"Modelo Externo: {repo}") |
|
card = f''' |
|
<div class="custom_lora_card"> |
|
<span>Loaded custom LoRA:</span> |
|
<div class="card_internal"> |
|
<img src="{image}" /> |
|
<div> |
|
<h3>{title}</h3> |
|
<small>{"Usando: <code><b>"+trigger_word+"</code></b> como palavra-chave" if trigger_word else "Não encontramos a palavra-chave, se tiver, coloque-a no prompt."}<br></small> |
|
</div> |
|
</div> |
|
</div> |
|
''' |
|
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) |
|
if not existing_item_index: |
|
new_item = { |
|
"image": image, |
|
"title": title, |
|
"repo": repo, |
|
"weights": path, |
|
"trigger_word": trigger_word, |
|
} |
|
print(new_item) |
|
existing_item_index = len(loras) |
|
loras.append(new_item) |
|
|
|
return ( |
|
gr.update(visible=True, value=card), |
|
gr.update(visible=True), |
|
gr.Gallery(selected_index=None), |
|
f"Custom: {path}", |
|
existing_item_index, |
|
trigger_word, |
|
) |
|
except Exception as e: |
|
gr.Warning( |
|
f"Modelo Inválido: ou o link está errado ou não é um FLUX" |
|
) |
|
return ( |
|
gr.update(visible=True, value=f"Modelo Inválido: ou o link está errado ou não é um FLUX"), |
|
gr.update(visible=False), |
|
gr.update(), |
|
"", |
|
None, |
|
"", |
|
) |
|
else: |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
def remove_custom_lora(): |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
run_lora.zerogpu = True |
|
|
|
|
|
collos = gr.themes.Soft( |
|
primary_hue="gray", |
|
secondary_hue="stone", |
|
neutral_hue="slate", |
|
radius_size=gr.themes.Size(lg="15px", md="8px", sm="6px", xl="16px", xs="4px", xxl="24px", xxs="2px") |
|
).set( |
|
body_background_fill='*primary_100', |
|
embed_radius='*radius_lg', |
|
shadow_drop='0 1px 2px rgba(0, 0, 0, 0.1)', |
|
shadow_drop_lg='0 1px 2px rgba(0, 0, 0, 0.1)', |
|
shadow_inset='0 1px 2px rgba(0, 0, 0, 0.1)', |
|
shadow_spread='0 1px 2px rgba(0, 0, 0, 0.1)', |
|
shadow_spread_dark='0 1px 2px rgba(0, 0, 0, 0.1)', |
|
block_radius='*radius_lg', |
|
block_shadow='*shadow_drop', |
|
container_radius='*radius_lg' |
|
) |
|
|
|
collos.css = """ |
|
#group_with_padding { |
|
padding: 20px; |
|
background-color: #f5f5f5; |
|
border: 1px solid #ccc; |
|
} |
|
|
|
#padded_text { |
|
padding: 10px; |
|
background-color: #eef; |
|
border-radius: 5px; |
|
font-size: 16px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(theme=collos, delete_cache=(60, 60)) as app: |
|
title = gr.HTML( |
|
"""<img src="https://huggingface.co/spaces/vcollos/Uniodonto/resolve/main/logo/logo_collos_3.png" alt="Logo" style="display: block; margin: 0 auto; padding: 5px 0px 20px 0px; width: 200px;" />""", |
|
elem_id="title", |
|
) |
|
selected_index = gr.State(None) |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.Textbox(label="Prompt", lines=1, placeholder=":/ Selecione o modelo ") |
|
with gr.Column(scale=1): |
|
generate_button = gr.Button("Gerar Imagem", variant="primary", elem_id="cta") |
|
with gr.Row(): |
|
with gr.Column(): |
|
selected_info = gr.Markdown("") |
|
gallery = gr.Gallery( |
|
label="Galeria", |
|
value=[(item["image"], item["title"]) for item in loras], |
|
allow_preview=False, |
|
columns=3, |
|
show_share_button=False |
|
) |
|
with gr.Group(): |
|
custom_lora = gr.Textbox(label="Selecione um Modelo Externo", placeholder="black-forest-labs/FLUX.1-dev") |
|
gr.Markdown("[Cheque a lista de modelos do Huggingface](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") |
|
custom_lora_info = gr.HTML(visible=False) |
|
custom_lora_button = gr.Button("Remova modelo Externo", visible=False) |
|
with gr.Group(): |
|
with gr.Group(): |
|
gr.Text(value="Dica: Sempre digite a Palavra-chave referente ao modelo que são: José Alves, Júlio, Pedro e Clóvis, com os devidos acentos.", elem_id="padded_text") |
|
|
|
with gr.Column(): |
|
progress_bar = gr.Markdown(elem_id="progress", visible=False) |
|
result = gr.Image(label="Imagem Gerada") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Configurações Avançadas", open=False): |
|
with gr.Row(): |
|
input_image = gr.Image(label="Insira uma Imagem", type="filepath") |
|
image_strength = gr.Slider(label="Remossão de ruído", info="Valores mais baixos significam maior influência da imagem.", minimum=0.1, maximum=1.0, step=0.01, value=0.75) |
|
with gr.Column(): |
|
with gr.Row(): |
|
cfg_scale = gr.Slider(label="Aumentar Escala", minimum=1, maximum=20, step=0.5, value=3.5) |
|
steps = gr.Slider(label="Passos", minimum=1, maximum=50, step=1, value=28) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Largura", minimum=256, maximum=1536, step=64, value=1024) |
|
height = gr.Slider(label="Altura", minimum=256, maximum=1536, step=64, value=1024) |
|
|
|
with gr.Row(): |
|
randomize_seed = gr.Checkbox(True, label="Fonte Randomizada") |
|
seed = gr.Slider(label="Fontes", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) |
|
lora_scale = gr.Slider(label="Escala do Modelo", minimum=0, maximum=3, step=0.01, value=0.95) |
|
|
|
gallery.select( |
|
update_selection, |
|
inputs=[width, height], |
|
outputs=[prompt, selected_info, selected_index, width, height] |
|
) |
|
custom_lora.input( |
|
add_custom_lora, |
|
inputs=[custom_lora], |
|
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] |
|
) |
|
custom_lora_button.click( |
|
remove_custom_lora, |
|
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] |
|
) |
|
gr.on( |
|
triggers=[generate_button.click, prompt.submit], |
|
fn=run_lora, |
|
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], |
|
outputs=[result, seed, progress_bar] |
|
) |
|
|
|
app.queue() |
|
app.launch() |