|
import streamlit as st |
|
import cv2 |
|
import numpy as np |
|
import tempfile |
|
from collections import Counter |
|
import pandas as pd |
|
import pyttsx3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
p_time = 0 |
|
|
|
st.sidebar.title('Settings') |
|
model_type = st.sidebar.selectbox( |
|
'Choose YOLO Model', ('YOLOv8', 'YOLOv9', 'YOLOv10') |
|
) |
|
|
|
st.title(f'{model_type} Predictions') |
|
sample_img = cv2.imread('logo2.jpg') |
|
FRAME_WINDOW = st.image(sample_img, channels='BGR') |
|
cap = None |
|
|
|
|
|
def speak(audio): |
|
engine = pyttsx3.init('sapi5') |
|
voices = engine.getProperty('voices') |
|
|
|
engine.setProperty('voice', voices[1].id) |
|
engine.say(audio) |
|
engine.runAndWait() |
|
|
|
|
|
options = st.sidebar.radio( |
|
'Options:', ('Webcam', 'Image', 'Video'), index=1) |
|
|
|
|
|
if model_type == 'YOLOv8': |
|
path_model_file = 'yolov8.pt' |
|
from ultralytics import YOLO |
|
model = YOLO(path_model_file) |
|
|
|
if model_type == 'YOLOv9': |
|
path_model_file = 'yolov9c.pt' |
|
from ultralytics import YOLO |
|
model = YOLO(path_model_file) |
|
if model_type == 'YOLOv10': |
|
st.caption("Work in Progress... >_<") |
|
|
|
|
|
|
|
|
|
|
|
class_labels = model.names |
|
|
|
|
|
confidence = st.sidebar.slider( |
|
'Detection Confidence', min_value=0.0, max_value=1.0, value=0.25) |
|
|
|
|
|
draw_thick = st.sidebar.slider( |
|
'Draw Thickness:', min_value=1, |
|
max_value=20, value=3 |
|
) |
|
|
|
color_pick_list = [None]*len(class_labels) |
|
|
|
|
|
|
|
if options == 'Image': |
|
upload_img_file = st.sidebar.file_uploader( |
|
'Upload Image', type=['jpg', 'jpeg', 'png']) |
|
if upload_img_file is not None: |
|
pred = st.checkbox(f'Predict Using {model_type}') |
|
file_bytes = np.asarray( |
|
bytearray(upload_img_file.read()), dtype=np.uint8) |
|
img = cv2.imdecode(file_bytes, 1) |
|
FRAME_WINDOW.image(img, channels='BGR') |
|
|
|
|
|
if pred: |
|
def predict(model, imag, classes=[], conf=confidence): |
|
if classes: |
|
results = model.predict(imag, classes=classes, conf=confidence) |
|
else: |
|
results = model.predict(imag, conf=conf) |
|
|
|
return results |
|
|
|
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick): |
|
results = predict(model, img, classes, conf=conf) |
|
|
|
|
|
class_counts = Counter() |
|
|
|
for result in results: |
|
for box in result.boxes: |
|
|
|
class_name = result.names[int(box.cls[0])] |
|
class_counts[class_name] += 1 |
|
|
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])), |
|
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness) |
|
cv2.putText(img, f"{class_name}", |
|
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10), |
|
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness) |
|
|
|
|
|
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number']) |
|
df_fq.index.name = 'Class' |
|
|
|
return img, df_fq |
|
|
|
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence) |
|
FRAME_WINDOW.image(img, channels='BGR') |
|
|
|
|
|
with st.container(): |
|
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True) |
|
st.markdown("<h3>Detected objects in curret Frame</h3>", unsafe_allow_html=True) |
|
st.dataframe(df_fq) |
|
|
|
|
|
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()] |
|
|
|
print("π ~ list_of_tuples:", list_of_tuples) |
|
|
|
speak(f'This is what I have found {list_of_tuples}') |
|
|
|
|
|
if options == 'Video': |
|
upload_video_file = st.sidebar.file_uploader( |
|
'Upload Video', type=['mp4', 'avi', 'mkv']) |
|
if upload_video_file is not None: |
|
pred = st.checkbox(f'Predict Using {model_type}') |
|
tfile = tempfile.NamedTemporaryFile(delete=False) |
|
tfile.write(upload_video_file.read()) |
|
cap = cv2.VideoCapture(tfile.name) |
|
|
|
while True: |
|
success, img = cap.read() |
|
if not success: |
|
st.error(f"Video NOT working\nCheck Video settings!", icon="π¨") |
|
break |
|
|
|
if pred: |
|
def predict(model, img, classes=[], conf=confidence): |
|
if classes: |
|
results = model.predict(img, classes=classes, conf=confidence) |
|
else: |
|
results = model.predict(img, conf=conf) |
|
return results |
|
|
|
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick): |
|
results = predict(model, img, classes, conf=conf) |
|
|
|
|
|
class_counts = Counter() |
|
|
|
for result in results: |
|
for box in result.boxes: |
|
|
|
class_name = result.names[int(box.cls[0])] |
|
class_counts[class_name] += 1 |
|
|
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])), |
|
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness) |
|
cv2.putText(img, f"{class_name}", |
|
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10), |
|
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness) |
|
|
|
|
|
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number']) |
|
df_fq.index.name = 'Class' |
|
|
|
return img, df_fq |
|
|
|
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence) |
|
FRAME_WINDOW.image(img, channels='BGR') |
|
|
|
|
|
with st.container(): |
|
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True) |
|
st.markdown("<h3>Detected objects in current Frame</h3>", unsafe_allow_html=True) |
|
st.dataframe(df_fq) |
|
|
|
|
|
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()] |
|
|
|
print("π ~ list_of_tuples:", list_of_tuples) |
|
|
|
|
|
|
|
|
|
if options == 'Webcam': |
|
cam_options = st.sidebar.selectbox('Select Webcam Channel', ('0', '1', '2', '3')) |
|
|
|
if not cam_options == 'Select Channel': |
|
pred = st.checkbox(f'Predict Using {model_type}') |
|
cap = cv2.VideoCapture(int(cam_options)) |
|
|
|
while True: |
|
success, img = cap.read() |
|
if not success: |
|
st.error(f"Webcam NOT working\nCheck Webcam settings!", icon="π¨") |
|
break |
|
|
|
if pred: |
|
def predict(model, img, classes=[], conf=confidence): |
|
if classes: |
|
results = model.predict(img, classes=classes, conf=confidence) |
|
else: |
|
results = model.predict(img, conf=conf) |
|
return results |
|
|
|
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick): |
|
results = predict(model, img, classes, conf=conf) |
|
|
|
|
|
class_counts = Counter() |
|
|
|
for result in results: |
|
for box in result.boxes: |
|
|
|
class_name = result.names[int(box.cls[0])] |
|
class_counts[class_name] += 1 |
|
|
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])), |
|
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness) |
|
cv2.putText(img, f"{class_name}", |
|
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10), |
|
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness) |
|
|
|
|
|
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number']) |
|
df_fq.index.name = 'Class' |
|
|
|
return img, df_fq |
|
|
|
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence) |
|
FRAME_WINDOW.image(img, channels='BGR') |
|
|
|
|
|
with st.container(): |
|
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True) |
|
st.markdown("<h3>Detected objects in current Frame</h3>", unsafe_allow_html=True) |
|
st.dataframe(df_fq) |
|
|
|
|
|
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()] |
|
|
|
print("π ~ list_of_tuples:", list_of_tuples) |
|
|
|
|
|
|
|
|