vasudevgupta's picture
Create app.py
c7a680a
raw
history blame
1.71 kB
import torch
from transformers import BigBirdForQuestionAnswering, BigBirdTokenizerFast
import gradio as gr
FLAX_MODEL_ID = "vasudevgupta/flax-bigbird-natural-questions"
if __name__ == "__main__":
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = BigBirdForQuestionAnswering.from_pretrained(FLAX_MODEL_ID, block_size=64, num_random_blocks=3, from_flax=True)
model.to(device)
tokenizer = BigBirdTokenizerFast.from_pretrained(FLAX_MODEL_ID)
def get_answer(question, context):
encoding = tokenizer(question, context, return_tensors="pt", max_length=4096, padding="max_length", truncation=True)
input_ids = encoding.input_ids.to(device)
attention_mask = encoding.attention_mask.to(device)
with torch.no_grad():
start_scores, end_scores = model(input_ids=input_ids, attention_mask=attention_mask).to_tuple()
# Let's take the most likely token using `argmax` and retrieve the answer
all_tokens = tokenizer.convert_ids_to_tokens(encoding["input_ids"].squeeze().tolist())
answer_tokens = all_tokens[torch.argmax(start_scores): torch.argmax(end_scores)+1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
return answer
default_context = "BigBird Pegasus just landed! Thanks to Vasudev Gupta, BigBird Pegasus from Google AI is merged into HuggingFace Transformers. Check it out today!!!"
question = gr.inputs.TextBox(lines=2, default="Who added BigBird to HuggingFace Transformers?", label="Question")
context = gr.inputs.TextBox(lines=10, default=default_context, label="Context")
gr.Interface(fn=get_answer, inputs=[question, context], outputs="text").launch()