Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -1,105 +1,41 @@
|
|
1 |
-
from torch import Tensor
|
2 |
-
from transformers import AutoTokenizer, AutoModel
|
3 |
-
from ctranslate2 import Translator
|
4 |
from typing import Union
|
5 |
-
|
6 |
from fastapi import FastAPI
|
7 |
from pydantic import BaseModel
|
8 |
-
|
9 |
-
|
10 |
-
def average_pool(last_hidden_states: Tensor,
|
11 |
-
attention_mask: Tensor) -> Tensor:
|
12 |
-
last_hidden = last_hidden_states.masked_fill(
|
13 |
-
~attention_mask[..., None].bool(), 0.0)
|
14 |
-
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
15 |
-
|
16 |
-
|
17 |
-
# text-ada replacement
|
18 |
-
embeddingTokenizer = AutoTokenizer.from_pretrained(
|
19 |
-
'./multilingual-e5-base')
|
20 |
-
embeddingModel = AutoModel.from_pretrained('./multilingual-e5-base')
|
21 |
-
|
22 |
-
# chatGpt replacement
|
23 |
-
inferenceTokenizer = AutoTokenizer.from_pretrained(
|
24 |
-
"./flan-alpaca-gpt4-xl-ct2")
|
25 |
-
inferenceTranslator = Translator(
|
26 |
-
"./flan-alpaca-gpt4-xl-ct2", compute_type="int8", device="cpu")
|
27 |
-
|
28 |
-
|
29 |
-
class EmbeddingRequest(BaseModel):
|
30 |
-
input: Union[str, None] = None
|
31 |
-
|
32 |
-
|
33 |
-
class TokensCountRequest(BaseModel):
|
34 |
-
input: Union[str, None] = None
|
35 |
|
36 |
|
37 |
class InferenceRequest(BaseModel):
|
38 |
input: Union[str, None] = None
|
39 |
-
|
40 |
|
41 |
|
42 |
app = FastAPI()
|
43 |
|
|
|
|
|
|
|
44 |
|
45 |
@app.get("/")
|
46 |
async def root():
|
47 |
return {"message": "Hello World"}
|
48 |
|
49 |
|
50 |
-
@app.post("/text-embedding")
|
51 |
-
async def text_embedding(request: EmbeddingRequest):
|
52 |
-
input = request.input
|
53 |
-
|
54 |
-
# Process the input data
|
55 |
-
batch_dict = embeddingTokenizer([input], max_length=512,
|
56 |
-
padding=True, truncation=True, return_tensors='pt')
|
57 |
-
outputs = embeddingModel(**batch_dict)
|
58 |
-
embeddings = average_pool(outputs.last_hidden_state,
|
59 |
-
batch_dict['attention_mask'])
|
60 |
-
|
61 |
-
# create response
|
62 |
-
return {
|
63 |
-
'embedding': embeddings[0].tolist()
|
64 |
-
}
|
65 |
-
|
66 |
-
|
67 |
@app.post('/inference')
|
68 |
async def inference(request: InferenceRequest):
|
69 |
input_text = request.input
|
70 |
-
|
71 |
try:
|
72 |
-
|
73 |
-
max_length = min(1024, max_length)
|
74 |
except:
|
75 |
pass
|
76 |
|
77 |
# process request
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
output_tokens = results[0].hypotheses[0]
|
85 |
-
output_text = inferenceTokenizer.decode(
|
86 |
-
inferenceTokenizer.convert_tokens_to_ids(output_tokens), skip_special_tokens=True)
|
87 |
-
|
88 |
-
# create response
|
89 |
-
return {
|
90 |
-
'generated_text': output_text
|
91 |
-
}
|
92 |
-
|
93 |
-
|
94 |
-
@app.post('/tokens-count')
|
95 |
-
async def tokens_count(request: TokensCountRequest):
|
96 |
-
input_text = request.input
|
97 |
-
|
98 |
-
tokens = inferenceTokenizer.convert_ids_to_tokens(
|
99 |
-
inferenceTokenizer.encode(input_text))
|
100 |
|
101 |
# create response
|
102 |
-
return {
|
103 |
-
'tokens': tokens,
|
104 |
-
'total': len(tokens)
|
105 |
-
}
|
|
|
|
|
|
|
|
|
1 |
from typing import Union
|
|
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
+
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
class InferenceRequest(BaseModel):
|
8 |
input: Union[str, None] = None
|
9 |
+
max_tokens: Union[int, None] = 0
|
10 |
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
llm = Llama(model_path="./models/vicuna-7b-v1.5.Q4_K_M.gguf",
|
15 |
+
verbose=False, n_ctx=4096)
|
16 |
+
|
17 |
|
18 |
@app.get("/")
|
19 |
async def root():
|
20 |
return {"message": "Hello World"}
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@app.post('/inference')
|
24 |
async def inference(request: InferenceRequest):
|
25 |
input_text = request.input
|
26 |
+
max_tokens = 256
|
27 |
try:
|
28 |
+
max_tokens = int(request.max_tokens)
|
|
|
29 |
except:
|
30 |
pass
|
31 |
|
32 |
# process request
|
33 |
+
try:
|
34 |
+
result = llm(input_text, temperature=0.2,
|
35 |
+
top_k=5, max_tokens=max_tokens)
|
36 |
+
return result
|
37 |
+
except:
|
38 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# create response
|
41 |
+
return {}
|
|
|
|
|
|