Update main.py
Browse files
main.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
from torch import Tensor
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
from ctranslate2 import Translator
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
def average_pool(last_hidden_states: Tensor,
|
@@ -13,24 +16,40 @@ def average_pool(last_hidden_states: Tensor,
|
|
13 |
|
14 |
# text-ada replacement
|
15 |
embeddingTokenizer = AutoTokenizer.from_pretrained(
|
16 |
-
'./multilingual-e5-base')
|
17 |
-
embeddingModel = AutoModel.from_pretrained('./multilingual-e5-base')
|
18 |
|
19 |
# chatGpt replacement
|
20 |
inferenceTokenizer = AutoTokenizer.from_pretrained(
|
21 |
-
"./ct2fast-flan-alpaca-xl")
|
22 |
inferenceTranslator = Translator(
|
23 |
-
"./ct2fast-flan-alpaca-xl", compute_type="int8", device="cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
25 |
|
26 |
-
app = Flask(__name__)
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
input = data["input"]
|
34 |
|
35 |
# Process the input data
|
36 |
batch_dict = embeddingTokenizer([input], max_length=512,
|
@@ -38,28 +57,24 @@ def text_embedding():
|
|
38 |
outputs = embeddingModel(**batch_dict)
|
39 |
embeddings = average_pool(outputs.last_hidden_state,
|
40 |
batch_dict['attention_mask'])
|
41 |
-
token_ids = batch_dict["input_ids"][0].tolist()
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
'embedding': embeddings[0].tolist()
|
46 |
}
|
47 |
|
48 |
-
return jsonify(response)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
# Get the JSON data from the request
|
54 |
-
data = request.get_json()
|
55 |
-
input_text = data["input"]
|
56 |
max_length = 256
|
57 |
try:
|
58 |
-
max_length = int(
|
59 |
max_length = min(1024, max_length)
|
60 |
except:
|
61 |
pass
|
62 |
|
|
|
63 |
input_tokens = inferenceTokenizer.convert_ids_to_tokens(
|
64 |
inferenceTokenizer.encode(input_text))
|
65 |
|
@@ -70,31 +85,21 @@ def inference():
|
|
70 |
output_text = inferenceTokenizer.decode(
|
71 |
inferenceTokenizer.convert_tokens_to_ids(output_tokens))
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
'generated_text': output_text
|
76 |
}
|
77 |
|
78 |
-
return jsonify(response)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
# Get the JSON data from the request
|
84 |
-
data = request.get_json()
|
85 |
-
input_text = data["input"]
|
86 |
|
87 |
tokens = inferenceTokenizer.convert_ids_to_tokens(
|
88 |
inferenceTokenizer.encode(input_text))
|
89 |
|
90 |
-
#
|
91 |
response = {
|
92 |
'tokens': tokens,
|
93 |
'total': len(tokens)
|
94 |
}
|
95 |
-
|
96 |
-
return jsonify(response)
|
97 |
-
|
98 |
-
|
99 |
-
if __name__ == '__main__':
|
100 |
-
app.run()
|
|
|
|
|
1 |
from torch import Tensor
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
from ctranslate2 import Translator
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
from fastapi import FastAPI
|
7 |
+
from pydantic import BaseModel
|
8 |
|
9 |
|
10 |
def average_pool(last_hidden_states: Tensor,
|
|
|
16 |
|
17 |
# text-ada replacement
|
18 |
embeddingTokenizer = AutoTokenizer.from_pretrained(
|
19 |
+
'./models/multilingual-e5-base')
|
20 |
+
embeddingModel = AutoModel.from_pretrained('./models/multilingual-e5-base')
|
21 |
|
22 |
# chatGpt replacement
|
23 |
inferenceTokenizer = AutoTokenizer.from_pretrained(
|
24 |
+
"./models/ct2fast-flan-alpaca-xl")
|
25 |
inferenceTranslator = Translator(
|
26 |
+
"./models/ct2fast-flan-alpaca-xl", compute_type="int8", device="cpu")
|
27 |
+
|
28 |
+
|
29 |
+
class EmbeddingRequest(BaseModel):
|
30 |
+
input: Union[str, None] = None
|
31 |
+
|
32 |
+
|
33 |
+
class TokensCountRequest(BaseModel):
|
34 |
+
input: Union[str, None] = None
|
35 |
+
|
36 |
+
|
37 |
+
class InferenceRequest(BaseModel):
|
38 |
+
input: Union[str, None] = None
|
39 |
+
max_length: Union[int, None] = 0
|
40 |
+
|
41 |
|
42 |
+
app = FastAPI()
|
43 |
|
|
|
44 |
|
45 |
+
@app.get("/")
|
46 |
+
async def root():
|
47 |
+
return {"message": "Hello World"}
|
48 |
|
49 |
+
|
50 |
+
@app.post("/text-embedding")
|
51 |
+
async def text_embedding(request: EmbeddingRequest):
|
52 |
+
input = request.input
|
|
|
53 |
|
54 |
# Process the input data
|
55 |
batch_dict = embeddingTokenizer([input], max_length=512,
|
|
|
57 |
outputs = embeddingModel(**batch_dict)
|
58 |
embeddings = average_pool(outputs.last_hidden_state,
|
59 |
batch_dict['attention_mask'])
|
|
|
60 |
|
61 |
+
# create response
|
62 |
+
return {
|
63 |
'embedding': embeddings[0].tolist()
|
64 |
}
|
65 |
|
|
|
66 |
|
67 |
+
@app.post('/inference')
|
68 |
+
async def inference(request: InferenceRequest):
|
69 |
+
input_text = request.input
|
|
|
|
|
|
|
70 |
max_length = 256
|
71 |
try:
|
72 |
+
max_length = int(request.max_length)
|
73 |
max_length = min(1024, max_length)
|
74 |
except:
|
75 |
pass
|
76 |
|
77 |
+
# process request
|
78 |
input_tokens = inferenceTokenizer.convert_ids_to_tokens(
|
79 |
inferenceTokenizer.encode(input_text))
|
80 |
|
|
|
85 |
output_text = inferenceTokenizer.decode(
|
86 |
inferenceTokenizer.convert_tokens_to_ids(output_tokens))
|
87 |
|
88 |
+
# create response
|
89 |
+
return {
|
90 |
'generated_text': output_text
|
91 |
}
|
92 |
|
|
|
93 |
|
94 |
+
@app.post('/tokens-count')
|
95 |
+
async def tokens_count(request: TokensCountRequest):
|
96 |
+
input_text = request.input
|
|
|
|
|
|
|
97 |
|
98 |
tokens = inferenceTokenizer.convert_ids_to_tokens(
|
99 |
inferenceTokenizer.encode(input_text))
|
100 |
|
101 |
+
# create response
|
102 |
response = {
|
103 |
'tokens': tokens,
|
104 |
'total': len(tokens)
|
105 |
}
|
|
|
|
|
|
|
|
|
|
|
|