Update main.py
Browse files
main.py
CHANGED
@@ -1,20 +1,100 @@
|
|
1 |
-
from
|
2 |
-
from
|
3 |
-
from
|
|
|
4 |
|
5 |
-
from transformers import pipeline
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
pipe_flan = pipeline("text2text-generation", model="reasonwang/flan-t5-xl-8bit")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from torch import Tensor
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
from ctranslate2 import Translator
|
5 |
|
|
|
6 |
|
7 |
+
def average_pool(last_hidden_states: Tensor,
|
8 |
+
attention_mask: Tensor) -> Tensor:
|
9 |
+
last_hidden = last_hidden_states.masked_fill(
|
10 |
+
~attention_mask[..., None].bool(), 0.0)
|
11 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
12 |
|
|
|
13 |
|
14 |
+
# text-ada replacement
|
15 |
+
embeddingTokenizer = AutoTokenizer.from_pretrained(
|
16 |
+
'./multilingual-e5-base')
|
17 |
+
embeddingModel = AutoModel.from_pretrained('./multilingual-e5-base')
|
18 |
|
19 |
+
# chatGpt replacement
|
20 |
+
inferenceTokenizer = AutoTokenizer.from_pretrained(
|
21 |
+
"./ct2fast-flan-alpaca-xl")
|
22 |
+
inferenceTranslator = Translator(
|
23 |
+
"./ct2fast-flan-alpaca-xl", compute_type="int8", device="cpu")
|
24 |
|
25 |
+
|
26 |
+
app = Flask(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
@app.route('/text-embedding', methods=['POST'])
|
30 |
+
def text_embedding():
|
31 |
+
# Get the JSON data from the request
|
32 |
+
data = request.get_json()
|
33 |
+
input = data["input"]
|
34 |
+
|
35 |
+
# Process the input data
|
36 |
+
batch_dict = embeddingTokenizer([input], max_length=512,
|
37 |
+
padding=True, truncation=True, return_tensors='pt')
|
38 |
+
outputs = embeddingModel(**batch_dict)
|
39 |
+
embeddings = average_pool(outputs.last_hidden_state,
|
40 |
+
batch_dict['attention_mask'])
|
41 |
+
token_ids = batch_dict["input_ids"][0].tolist()
|
42 |
+
|
43 |
+
# Create a JSON response
|
44 |
+
response = {
|
45 |
+
'embedding': embeddings[0].tolist()
|
46 |
+
}
|
47 |
+
|
48 |
+
return jsonify(response)
|
49 |
+
|
50 |
+
|
51 |
+
@app.route('/inference', methods=['POST'])
|
52 |
+
def inference():
|
53 |
+
# Get the JSON data from the request
|
54 |
+
data = request.get_json()
|
55 |
+
input_text = data["input"]
|
56 |
+
max_length = 256
|
57 |
+
try:
|
58 |
+
max_length = int(data["max_length"])
|
59 |
+
max_length = min(1024, max_length)
|
60 |
+
except:
|
61 |
+
pass
|
62 |
+
|
63 |
+
input_tokens = inferenceTokenizer.convert_ids_to_tokens(
|
64 |
+
inferenceTokenizer.encode(input_text))
|
65 |
+
|
66 |
+
results = inferenceTranslator.translate_batch(
|
67 |
+
[input_tokens], max_input_length=0, max_decoding_length=max_length, num_hypotheses=1, repetition_penalty=1.3, sampling_topk=30, sampling_temperature=1.1, use_vmap=True)
|
68 |
+
|
69 |
+
output_tokens = results[0].hypotheses[0]
|
70 |
+
output_text = inferenceTokenizer.decode(
|
71 |
+
inferenceTokenizer.convert_tokens_to_ids(output_tokens))
|
72 |
+
|
73 |
+
# Create a JSON response
|
74 |
+
response = {
|
75 |
+
'generated_text': output_text
|
76 |
+
}
|
77 |
+
|
78 |
+
return jsonify(response)
|
79 |
+
|
80 |
+
|
81 |
+
@app.route('/tokens-count', methods=['POST'])
|
82 |
+
def tokens_count():
|
83 |
+
# Get the JSON data from the request
|
84 |
+
data = request.get_json()
|
85 |
+
input_text = data["input"]
|
86 |
+
|
87 |
+
tokens = inferenceTokenizer.convert_ids_to_tokens(
|
88 |
+
inferenceTokenizer.encode(input_text))
|
89 |
+
|
90 |
+
# Create a JSON response
|
91 |
+
response = {
|
92 |
+
'tokens': tokens,
|
93 |
+
'total': len(tokens)
|
94 |
+
}
|
95 |
+
|
96 |
+
return jsonify(response)
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == '__main__':
|
100 |
+
app.run()
|